Posts in Category: methodology

methodology

Paper: Juggling multiple tasks in a synthetic task environment


Doing two things at once, like singing while you take a shower,
is not the same as instant messaging while writing a research report.
Don’t fool yourself into thinking you can multitask jobs that need your
full attention. You’re not really having a conversation while you write;
you’re shifting your attention back and forth between the two activities quickly.
You’re juggling. When you juggle tasks, your work suffers AND takes longer
— because switching tasks costs.
Gina Trapani, Work Smart, FastCompany.com

[Copyright neth.de, 2006]:

Hans Neth, Brittney Oppermann, Sunny Khemlani, Wayne Gray (2006)

Juggling multiple tasks: A rational analysis of multitasking in a synthetic task environment.

Paper presented at HFES 2006, San Francisco, CA, USA.

Hansjörg Neth, Sangeet S. Khemlani, Brittney Oppermann, Wayne D. Gray

Juggling multiple tasks: A rational analysis of multitasking in a synthetic task environment

Abstract:  Tardast (Shakeri 2003; Shakeri & Funk, in press) is a new and intriguing paradigm to investigate human multitasking behavior, complex system management, and supervisory control.  We present a replication and extension of the original Tardast study that assesses operators’ learning curve and explains gains in performance in terms of increased sensitivity to task parameters and a superior ability of better operators to prioritize tasks.  We then compare human performance profiles to various artificial software agents that provide benchmarks of optimal and baseline performance and illustrate the outcomes of simple heuristic strategies.  Whereas it is not surprising that human operators fail to achieve an ideal criterion of performance, we demonstrate that humans also fall short of a principally achievable standard.  Despite significant improvements with practice, Tardast operators exhibit stable sub-optimal performance in their time-to-task allocations.

Chapter: The functional task environment


Human beings, viewed as a behaving system, are quite simple.
The apparent complexity of our behavior over time is largely a reflection
of the complexity of the environment in which we find ourselves.
(Simon, 1996, p. 53)

Wayne D. Gray, Hansjörg Neth, Michael J. Schoelles

The functional task environment

From the introduction:  Although human thought may be possible in those floatation tanks that are used to encourage meditative states, in by far the majority of instances thought occurs in the context of some physical task environment. The physical environment can be as simple as a light and book. It can be as complex as the face of a mountain and the equipment of the climber. It may be as dynamic as the cockpit of an F-16 in supersonic flight and as reactive as a firefight in Iraq or as heated as an argument between lovers.

Paper: Melioration dominates maximization

There is no reason to suppose that most human beings are
engaged in maximizing anything unless it be unhappiness,
and even this with incomplete success.
R.H. Coase (1980), The Firm, the Market, and the Law, p. 4

[Copyright neth.de, 2006]:

Hans Neth, Chris Sims, Wayne Gray (2006). Melioration dominates maximization: Stable suboptimal performance despite global feedback. Paper presented at CogSci 2006.

Hansjörg Neth, Chris R. Sims, Wayne D. Gray

Melioration dominates maximization: Stable suboptimal performance despite global feedback

Abstract:  Situations that present individuals with a conflict between local and global gains often evoke a behavioral pattern known as melioration — a preference for immediate rewards over higher long-term gains.  Using a variant of a binary forced- choice paradigm by Tunney & Shanks (2002), we explored the potential role of global feedback as a means to reduce this bias. 

Paper: Integrated models of cognitive systems

Michael J. Schoelles, Hansjörg Neth, Christopher W. Myers, Wayne D. Gray

Steps towards integrated models of cognitive systems:  A levels-of-analysis approach to comparing human performance to model predictions in a complex task environment

Abstract:  Attempts to model complex task environments can serve as benchmarks that enable us to assess the state of cognitive theory and to identify productive topics for future research.  Such models must be accompanied by a thorough examination of their fit to overall performance as well as their detailed fit to the microstructure of performance.  We provide an example of this approach in our Argus Prime model of a complex simulated radar operator task that combines real-time demands on human cognitive, perceptual, and action with a dynamic decision-making task.  The generally good fit of the model to overall performance is a mark of the power of contemporary cognitive theory and architectures of cognition.  The multiple failures of the model to capture fine-grained details of performance mark the limits of contemporary theory and signal productive areas for future research.