Posts Tagged: theory

Chapter: How can decision models decide to not decide? Modeling suspension in fast-and-frugal trees (FFTs)

Hansjörg Neth, Jelena Meyer

How can decision models decide to not decide? 
Modeling suspension in fast-and-frugal trees (FFTs)

Abstract

The phenomena of indecision and suspension loom large in both philosophy and psychology.  Whereas psychology discusses related phenomena in practical tasks and mostly pathological terms, philosophy strives for conceptual clarification and emphasizes the ubiquity and variety of suspension.

In this chapter, we use fast-and-frugal trees (FFTs) as a drosophila model for developing a positive account of suspension in decision-making.  Being designed for handling binary classification tasks, FFTs seem particularly ill-suited for accommodating a third stance.  But by replacing one decision outcome by a do not know category or adding it as a third option, we can adapt and extend the FFT framework to explore the causes and consequences of suspension.

Considering the distributions of decision outcomes and contrasting the performance of alternative models in terms of cost-benefit trade-offs illustrates the power of this methodology. Overall, a model-based approach provides surprising insights into the functions and mechanisms of suspension and serves as a productive tool for thinking.

Keywords

  • fast-and-frugal trees (FFTs), judgment and decision making (JDM), heuristics, binary classification, cost-benefit trade-offs, indecision, computer modeling, philosophy, machine learning, suspension

Reference

  • Neth, H., & Meyer, J. (2025). How can decision models decide to not decide?  Modeling suspension in fast-and-frugal trees (FFTs). In V. Wagner & A. Zinke (Eds.), Suspension in epistemology and beyond (pp. 286–303). New York, NY: Routledge.
    doi 10.4324/9781003474302-20

Related:  FFTrees: An R toolbox to create, visualize, and evaluate FFTs

Resources: 10.4324/9781003474302-20 | Download PDF |   Google Scholar

Paper: Perspectives on the 2×2 Matrix

The 2x2 matrix lens model: Pipeline of perspectives

Hansjörg Neth, Nico Gradwohl, Dirk Streeb, Daniel A. Keim, Wolfgang Gaissmaier

Perspectives on the 2×2 matrix: Solving semantically distinct problems based on a shared structure of binary contingencies

Abstract

Cognition is both empowered and limited by representations.  The matrix lens model explicates tasks that are based on frequency counts, conditional probabilities, and binary contingencies in a general fashion. Based on a structural analysis of such perspective on representational accounts of cognition that recognizes representational isomorphs as opportunities, rather than as problems. 
The shared structural construct of a 2×2 matrix supports a set of generic tasks and semantic mappings that provide a tasks, the model links several problems and semantic domains and provides a new unifying framework for understanding problems and defining scientific measures.  Our model’s key explanatory mechanism is the adoption of particular perspectives on a 2×2 matrix that categorizes the frequency counts of cases by some condition, treatment, risk, or outcome factor. By the selective steps of filtering, framing, and focusing on specific aspects, the measures used in various semantic domains negotiate distinct trade-offs between abstraction and specialization.  As a consequence, the transparent communication of such measures must explicate the perspectives encapsulated in their derivation. 
To demonstrate the explanatory scope of our model, we use it to clarify theoretical debates on biases and facilitation effects in Bayesian reasoning and to integrate the scientific measures from various semantic domains within a unifying framework.  A better understanding of problem structures, representational transparency, and the role of perspectives in the scientific process yields both theoretical insights and practical applications.

Why read this paper?

This paper is quite long and covers a wide array of concepts and topics.  So what can you expect to gain from reading it?

Paper: Rational task analysis (RTA)

Just as a scissors cannot cut paper without two blades,
a theory of thinking and problem solving cannot predict behavior
unless it encompasses both an analysis of the structure of task environments
and an analysis of the limits of rational adaptation to task requirements.
(Newell & Simon, 1972, p. 55)

 

 

 

 


Hansjörg Neth, Chris R. Sims, Wayne D. Gray

Rational task analysis: A methodology to benchmark bounded rationality

Abstract:  How can we study bounded rationality?  We answer this question by proposing rational task analysis (RTA)—a systematic approach that prevents experimental researchers from drawing premature conclusions regarding the (ir-)rationality of agents.  RTA is a methodology and perspective that is anchored in the notion of bounded rationality and aids in the unbiased interpretation of results and the design of more conclusive experimental paradigms. 

Paper: Social influence and collective opinion formation

The rule is perfect: in all matters of opinion our adversaries are insane.
Mark Twain, Christian Science (1907, Book 1, Ch. 5)

Mehdi Moussaïd, Juliane E. Kämmer, Pantelis P. Analytis, Hansjörg Neth

Social influence and the collective dynamics of opinion formation

Abstract:  Social influence is the process by which individuals adapt their opinion, revise their beliefs, or change their behavior as a result of social interactions with other people. In our strongly interconnected society, social influence plays a prominent role in many self-organized phenomena such as herding in cultural markets, the spread of ideas and innovations, and the amplification of fears during epidemics. Yet, the mechanisms of opinion formation remain poorly understood, and existing physics-based models lack systematic empirical validation. Here, we report two controlled experiments showing how participants answering factual questions revise their initial judgments after being exposed to the opinion and confidence level of others.