
Topics in Cognitive Science 9 (2017) 83–101
Copyright © 2017 Cognitive Science Society, Inc. All rights reserved.
ISSN:1756-8757 print / 1756-8765 online
DOI: 10.1111/tops.12248

This article is part of the topic “Best of Papers from the 2016 International Conference on
Cognitive Modeling,” David Reitter and Frank E. Ritter (Topic Editors). For a full listing of
topic papers, see http://onlinelibrary.wiley.com/doi/10.1111/tops.2017.9.issue-1/issuetoc.

Visual Working Memory Resources Are Best
Characterized as Dynamic, Quantifiable Mnemonic

Traces

Bella Z. Veksler,a Rachel Boyd,a Christopher W. Myers,b

Glenn Gunzelmann,b Hansj€org Neth,c Wayne D. Grayd

aOak Ridge Institute for Science & Education at AFRL
bU.S. Air Force Research Laboratory

cDepartment of Psychology, University of Konstanz
dCognitive Science Department, Rensselaer Polytechnic Institute

Received 25 October 2016; received in revised form 9 November 2016; accepted 15 November 2016

Abstract

Visual working memory (VWM) is a construct hypothesized to store a small amount of accu-

rate perceptual information that can be brought to bear on a task. Much research concerns the con-

struct’s capacity and the precision of the information stored. Two prominent theories of VWM

representation have emerged: slot-based and continuous-resource mechanisms. Prior modeling

work suggests that a continuous resource that varies over trials with variable capacity and a poten-

tial to make localization errors best accounts for the empirical data. Questions remain regarding

the variability in VWM capacity and precision. Using a novel eye-tracking paradigm, we demon-

strate that VWM facilitates search and exhibits effects of fixation frequency and recency, particu-

larly for prior targets. Whereas slot-based memory models cannot account for the human data, a

novel continuous-resource model does capture the behavioral and eye tracking data, and identifies

the relevant resource as item activation.
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1. Introduction

Working memory (WM) is a limited capacity memory system used for temporarily

storing and manipulating information (Baddeley, 2003; Baddeley & Hitch, 1974).

Research has demonstrated relationships between WM and a wide scope of intellectual

abilities, including fluid intelligence (Fukuda et al., 2010; Unsworth et al., 2014), logical

reasoning, and problem solving (Engle et al., 1999).

Baddeley proposed visual working memory (VWM) as a distinct process within the

working memory system, which he referred to as the visuospatial sketchpad. Visual work-

ing memory is a construct hypothesized to be a limited capacity system that maintains

representations of visual information temporarily for use and manipulation in the perfor-

mance of ongoing tasks (Luck & Vogel, 2013). This construct has garnered much atten-

tion and has been the focus of many studies and computational models. Even so, answers

to fundamental questions, such as its capacity and the precision of its representation,

remain elusive (Van den Berg & Ma, 2014).

The dominant approach to studying VWM uses a passive, tachistoscopic version of

the change detection paradigm (Alvarez & Cavanagh, 2004). This has been and contin-

ues to be the most prominent paradigm in contemporary empirical research on VWM

(Donkin, Kary, Tahir, & Taylor, 2016). In this task, a participant typically is instructed

to attend to, and remember, information within a stimulus display. The information dis-

played tends to be a set of unique objects that differ across features, such as shape,

color, and/or location. After some time (75–2,000 ms; Bays, Wu, & Husain, 2011;

Ester, Drew, Klee, Vogel, & Awh, 2012, respectively), the stimulus disappears for some

delayed amount of time (300–3,000 ms; Ester et al., 2012; Rademaker, Tredway, &

Tong, 2012, respectively), and the object of the possible change is cued, or a new stim-

ulus appears. If a change occurred, the participant must indicate the change in some

manner, either by responding yes/no (c.f., Alvarez & Cavanagh, 2004), by indicating

the object (c.f., Anderson, Vogel, & Awh, 2013), location (c.f., Barton, Ester, & Awh,

2009), or some combination thereof. Researchers vary the number of items in a stimu-

lus (i.e., set size) to evaluate VWM capacity and use change identification to evaluate

VWM precision.

The initial behavioral findings of change-detection studies were that participants’ per-

formance declined as the stimulus set size increased beyond four items (Luck & Vogel,

1997). This behavioral finding has both been successfully replicated (Cowan, Fristoe,

Elliott, Brunner, & Saults, 2006; Scolari, Vogel, & Awh, 2008) and failed to replicate

(Alvarez & Cavanagh, 2004; Bays et al., 2011). Features of the experiment vary across

studies (i.e., presentation time, stimulus attributes, participant report, set size, and data

analysis approaches), potentially leading to these disparate results. In spite of (or

because of) these discrepancies, two broad classes of competing theories of visual

working memory capacity have come to dominate the literature: slot and continuous
resource theories.
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1.1. Prominent theories of visual working memory

Slot theories of VWM generally posit a fixed capacity of few discrete items with high

to perfect precision (Luck & Vogel, 2013). The trait of discrete items is shared with the

long-standing hypothesized structure of the general working memory system (Cowan,

2001). By contrast, continuous resource theories of VWM posit a finite resource that can

be spread across different areas/items of a scene. This resource is dedicated to VWM and

can be flexibly distributed across items in a display (Wilken & Ma, 2004). In the follow-

ing sections, we briefly introduce, compare, and contrast slot and resource theories (for

more detailed reviews, see Brady, Konkle, & Alvarez, 2011; Luck & Vogel, 2013).

Slot theories were the first theories posited to account for VWM capacity. They pre-

sume that VWM capacity has a fixed item limit of three to four items. A slot is a mem-

ory container, which is filled with a complete object representation which has integrated,

bound features that can be accurately recalled independent of visual complexity, be it a

single vertical line or a complex Chinese character (Luria & Vogel, 2011). This encoding

begins as quickly as visual perception allows, with event-related potential evidence point-

ing toward accurate yes/no responses for complex objects in natural scenes when presen-

tation is as short as 20 ms (Thorpe, Fize, & Marlot, 1996). Information for an object is

not hypothesized to be distributed across slots. When all of the slots are filled (VWM

capacity has been reached), no information about other stimuli is stored: no complex

items, no conjoined features, nor any single feature at any level or gradient. Further, stim-

uli are remembered in an all-or-nothing fashion; thus, slot theorists postulate that partici-

pants guess when presented with stimuli containing items that surpass VWM capacity.

As experimental paradigms became more sophisticated (Wilken & Ma, 2004), Zhang

and Luck (2008) revised their slot theory to the “slots + averaging” model and aimed to

measure VWM capacity in terms of objects and the precision of information remembered

per object. In this model, if there are more slots than objects to be remembered, objects

may be represented again in a free slot, leaving no slot empty. Thus, the model always

reaches its capacity, with some of the stored information being redundant. This model pre-

dicts that fewer than four objects can be encoded with higher fidelity than four objects. It

also indicates that no information about objects upwards of four is stored, meaning that

responses should be random after set size has exceeded capacity. They found the probability

that an item was stored in memory declined slowly from set sizes one, two and three, and

then declined sharply at set size six. Item precision increased as set size increased from one,

two, and three items, then remained constant at a set size of six items (Zhang & Luck,

2008). The former result implies that capacity is maximized at three objects, a characteristic

of slot theories. The latter result, that item precision did not increase past set size three, was

taken as evidence that no further information about items was being stored. However, this

revision of slot theory still disregards object complexity and object interaction.

A competing account of visual working memory in the form of resource theory pro-

poses to address these shortcomings of slot theory. The “resource” in resource theory

refers, somewhat vaguely, to a pool of mental processing power dedicated to visual work-

ing memory that can be flexibly distributed across multiple items within a display. Just
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how mental resources are distributed across items is debated among resource theorists,

but the overarching hypothesis that a small number of objects can be encoded with high

precision and a large number of objects can be encoded if lower precision is accepted

among them. The fewer the objects, the less distributed the memory representations are,

leading to the likelihood of more accurate recall. At least some information about all

objects displayed is stored in visual working memory, but the information represented

may be inaccurate or incomplete. For example, some conjoined features from one object

may be stored, along with a complete second object, and a single feature from a third

object. As an object can be partially remembered or not fully encoded, resource theorists

do not interpret incorrect responses as evidence for guessing, but as a consequence of

errors in encoding or retrieval (Bays et al., 2011; Fougnie & Alvarez, 2011; Van den

Berg, Shin, Chou, George, & Ma, 2012). This interpretation is supported by evidence that

items can interact in memory. For instance, feature information can be “swapped,” pro-

ducing illusory conjunctions (Treisman & Schmidt, 1982) and suggesting that items were

either insufficiently maintained or erroneously retrieved (Bays et al., 2011).

Van den Berg, Awh, and Ma (2014) used a factorial comparison of previously reported

answers to address core questions of VWM: What is the nature of mnemonic precision,

how many items can be remembered, and what effect do spatial-binding errors have on

VWM?

The five prominent results to come out of VWM research addressing these three ques-

tions were used to generate the scope of corresponding models: (a) the presence of an

upper VWM limit (Cowan, 2001; Miller, 1956); (b) memory precision decreases with the

amount of information in a scene (Wilken & Ma, 2004); (c) precision comes in stackable

quanta (Zhang & Luck, 2009); (d) memory precision varies across trials (Van den Berg

et al., 2012); and that (e) incorrect spatial binding leads to localization errors (Wheeler &

Treisman, 2002); These five results were organized into three factors that represented dis-

puted answers about VWM precision, capacity, and the potential for spatial-binding

errors. The approach resulted in 32 different models, only six of which have been previ-

ously reported in the literature. All models were tested on 10 previously published empir-

ical results from a delayed-response, tachistoscopic, change-detection paradigm collected

across six different laboratories (resulting in 131,452 trials from 164 participants). The

results from these models indicated that a previously unreported model best accounted for

the data. The novel model is characterized by a notion of continuous precision that varies

across trials along with a capacity that varies across trials combined with the presence of

the potential for spatial-binding errors (i.e., variable precision, variable capacity, with spa-

tial-binding errors). Thus, Van den Berg et al.’s (2014) results raise the question of what

is leading to variance in VWM precision and capacity.

Donkin et al. (2016) have argued that a VWM system using a continuous resource

may appear to support a slot interpretation when the number of items to remember varies

from trial to trial. At times, highly precise representations of a small number of objects

appear to favor a slot-based model, but when set size is unpredictable participants are

biased to focus on a small subset of items, leading to performance suggestive of a slot

model. When set size was predictable (the same across multiple trials), resource models best
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characterized the data. Donkin et al.’s (2016) results seem to support Van den Berg et al.’s

(2014) modeling results and explain why precision and capacity may vary across trials.

1.2. Motivation and approach

Visual working memory has been studied extensively within the context of a change

detection paradigm, and we present several reasons why basic questions regarding capac-

ity and precision still remain unanswered and contested among slot and resource theorists.

There are weaknesses to using passive change detection to understand VWM (Rouder,

Morey, Morey, & Cowan, 2011). This paradigm, which consists of delayed responses (2–
3 s), does not tap into the functional importance of VWM—to facilitate the accurate

completion of an active visual task through the temporary storage of readily available

information. Outside the experimental laboratory, visual search does not occur as an iso-

lated and self-contained task, but rather in the context of a task where targets contained

in some visual array are distinguished from distractors, and vision is an active process

(Findlay & Gilchrist, 2003). Because passive change detection studies typically use

tachistoscopic presentation of stimuli, it ensures that participants do not deviate from fix-

ating the center of the screen (Bays & Husain, 2008; Bays, Catalao, & Husain, 2009;

Bays et al., 2011). By leveraging eye tracking technology and allowing for overt shifts of

attention, we can more readily distinguish the nuances of VWM capacity and precision

within this active vision approach, as variability in capacity and precision may be a direct

result of where visual attention was allocated during the task.

In addition, this variability may be an adaptation to experimental paradigms that change

set sizes from trial to trial, as alluded to by Donkin et al. (2016). There are other potential

explanations behind the trial-to-trial variance reported by Van den Berg et al. (2014) other

than the randomization of set size across trials put forth by Donkin et al. (2016).

In the current paper, we provide an explanation for the variance in VWM precision

and capacity and identify a candidate resource. To do so, we introduce a new eye-track-

ing paradigm that moves away from the change detection tasks commonly used to inves-

tigate VWM. Our new paradigm of repeated serial search (Neth, Gray, & Myers, 2006)

requires an individual to actively search for different and occasionally repeating targets

within a stable visual display. This creates a task that is more realistic and ecologically

valid than a passive change detection paradigm because in the real world, a static visual

scene rarely changes rapidly and without warning, and humans can move their eyes to

explore their visual world. Importantly, it allows us to ask questions of VWM that inform

how it drives search behavior and the potential differences in depth of encoding between

targets and distractors because we have access to the full history of human fixations. Fur-

ther, we developed six models in the spirit of the van den Berg (Van den Berg et al.,

2014) factorial: three memory types (no memory, slot-based, continuous resource) crossed

with two different search strategies (random and closest-to-nearest) to determine which

VWM theory best accounts for the human data. In our models, a search strategy is only

relied upon if the memory trace is weak or non-existent for the current target of the

search.
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Previewing the results, our empirical and modeling work leads to five important con-

clusions: (a) the variability in VWM capacity and (b) precision results from recency and

frequency effects from selectively encoding visual information; (c) memory facilitates

search behavior; (d) targets have a stronger mnemonic trace than distractors; and (e) the

relevant “resource” involved is memory activation. In the following sections, we intro-

duce our paradigm and present empirical results, followed by a model-based analysis of

the empirical data.

2. Experiment

To determine the degree to which VWM facilitates visual search, we designed an

experiment using a novel repeated serial search paradigm. In this paradigm, participants

were required to search the same spatial configuration of 10 static items a total of 20

times. This paradigm taps into the VWM construct by motivating participants to retain a

maximum amount of information in VWM to facilitate future searches.

Paradigm. On every trial, 10 circular objects with a diameter of 60 pixels each were

distributed randomly over a centered white rectangular display on a 17” flat panel screen

(measuring 1,270 9 970 pixels). The objects were positioned at least 60 pixels away

from any edge, and the distance between the centers of any two objects was constrained

to be at least 200 pixels. Each circle contained a hidden label (upper case letter, number,

or monosyllabic four-letter word) that specified the target sought by the participant. On

any given trial, only one type of label was in the circles (letters, numbers, or words). The

order of label types was randomized within each participant’s task presentation.

Every trial comprised a total of 20 searches through the display. At the start of each

search, the experimental software announced the current target label to the participant

(e.g., “cell” in Fig. 1). Participants had to hover with the mouse cursor over a circle to

uncover its hidden label. Upon moving the cursor off the circle, the corresponding label

was hidden again. Participants were instructed to click on the circle corresponding to the

target label. If the clicked circle indeed contained the current target label, a new target

was announced. By contrast, clicking on a different circle was recorded as an error and

again announced the current target label to provide a reminder to the searcher. Conse-

quently, searchers typically uncovered non-targets (distractors) in the process of searching

for targets, and these distractors may turn into targets in subsequent searches.

Participants. A total of 13 Rensselaer Polytechnic Institute undergraduates (3 females)

volunteered for course credit. Their mean age was 18.92 years (SD = 1.04).

Procedure. Participants signed informed consent forms, viewed a slideshow of the

instructions, and were calibrated to an LC Technologies eye tracker prior to beginning

the study. Every participant completed 60 trials in total. Each trial consisted of a series

of 20 searches. Every search commenced when a computer-generated voice announced a

next target to be found.

88 B. Z. Veksler et al. / Topics in Cognitive Science 9 (2017)
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2.1. Results

Visual point of regard and mouse location and click data were collected as participants

did the task and then compiled into a sequential history of fixations for each participant.

Given this sequence of fixations, at the beginning of a search, we determined how many

times each label (item) was fixated (frequency) and how long ago (recency). This allowed

us to investigate recency and frequency effects in finding a target. The functional role of

labels (i.e., whether labels were previously seen and encoded as targets or as distractors)

was also investigated.

2.1.1. Recency effects
For this analysis, we restricted the data to the first two times a label was a target of a

search. Fig. 2, left, shows the trend of recency on the number of fixations to find the tar-

get as a function of whether the label had previously been a target before (label type). A

2 (label type) 9 10 (recency) ANOVA was performed to evaluate the effect of item

Fig. 1. Example stimulus used in the experiment. Although all labels are visible here, they were hidden

from participants’ view until a cursor hovered within the circle.

B. Z. Veksler et al. / Topics in Cognitive Science 9 (2017) 89
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encoding and recency of an item’s last fixation. There was an interaction between

whether an item was a target before and how recently it was last fixated, F(9,
108) = 3.76, p < .001, g2 ¼ 0:24. There was also a significant main effect of recency, F
(9, 108) = 11.94, p < .001, g2 ¼ 0:50 (see the top line of Fig. 2, left). This effect was

greater for labels that had not been previous targets, F(1, 12) = 73.42, p < .001,

g2 ¼ 0:86. In general, labels that were prior targets were less impacted by the fixation

recency (bottom line of Fig. 2, left).

One plausible explanation for the inverted U-shape of the items that were only distrac-

tors prior to the current search is that participants searching through the display are only

encoding whether or not the current item is the target, rather than the identity of the item.

Encoding recent items as non-targets may result in an inhibition of return effect for more

recently fixated items (2–5 fixations ago) leading to longer search times than when the

distractor was seen a longer time ago.

2.1.2. Frequency effects
The right panel of Fig. 2 shows the effect of the number of times an item had previ-

ously been fixated on how rapidly it is found as a target and as a function of whether it

had previously been a target (label type). A 2 (label type) 9 7 (frequency) AVOVA was

performed to evaluate the effect of label encoding frequency. There was insufficient data

in frequency bins 0 and 1 (i.e., in cases where a second search for a target was preceded

by zero or one fixations on the item prior to the search), leaving bins 2–8 for analysis.

Nonetheless, these bins reflect the general trend in the data. There was a significant inter-

action between fixation frequency and label type on the number of fixations to find the

target, F(6, 72) = 5.92, p < .001, g2 ¼ 0:33, where searches required fewer fixations

when a label had been a target before despite being seen <5 times, F(1, 12) = 38.37,

p < .001, g2 ¼ 0:76 (bottom line of Fig. 2, right). Further, there was a main effect of

Fig. 2. Mean number of fixations needed to find a target as a function of recency (left) and frequency (right)

of seeing the target before. Error bars indicate standard errors.
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frequency on number of fixations to find the target, F(6, 72) = 3.25, p < .01, g2 ¼ 0:21.
In particular, items that had not been prior targets show a benefit of having seen the item

more frequently, whereas previous targets seem to be encoded sufficiently enough that it

takes fewer and roughly the same number of fixations to find the target again, irrespective

of the number of previous fixations.

2.1.3. Recency and frequency effects
In order to provide a more robust description of the human data, we examined the pro-

portion of all searches in which a target was last seen R (Recency) fixations ago or was

seen F (Frequency) times prior to the search and was found within N fixations. Fig. 3

illustrates the respective distributions generated by analyzing the human data in this way.

In particular, in the recency graph (on the left), the peak of the distribution shifts to the

right (i.e., more fixations to find the target) as R increases. Overall, the human data exhi-

bits a curve with an initial peak and gradual decline across all recency values, with the

proportion of searches in which a target is found in a higher number of fixations falling

off gradually.

In the frequency graph (in the right panel of Fig. 3), the proportion of all searches in

which the target is found stays roughly around 10% across all values of N when the tar-

get has never been fixated before (F = 0). By contrast, items which have been fixated

more frequently (e.g., F ≥ 1) show a more pronounced peak at N = 3 when compared to

items which were fixated less frequently.

Subsequent model runs were compared to these distributions. We wanted to be able to

capture both the magnitude of the proportions (in both recency and frequency) as well as

the general shape of the distributions as proportions gradually tapered off for higher val-

ues of N. Note that these distributions are agnostic to whether target labels were previ-

ously targets or not.

Fig. 3. Proportions of recency (left) and frequency (right) effects in the human data.
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2.2. Experiment discussion

The results from the study indicated that the number of fixations to find a target is system-

atically affected by (a) whether that label had or had not been a prior search target, (b) the

recency of a label’s previous fixation, and (c) the frequency of a label’s previous fixations.

Each of these effects contributes to the variability in VWM capacity and precision. An item

label more recently encoded will lead to the appearance of a larger VWM capacity and

higher VWM precision. Similarly, a label more frequently encoded will lead to the appear-

ance of a larger capacity with greater precision. In passive change detection, the probe is

chosen at random and may sometimes select a target that has neither been recently or fre-

quently encoded. This could naturally lead to the perception of capacity and precision vari-

ability of VWM. By a model-based analysis that accounts for selective attention processes

during search, we can more concretely pinpoint the mechanisms leading to this variability.

3. Model-based analysis

Given the debate in the literature between slot-based and continuous resource models

of VWM, we chose to run a factorial combination of models and search strategies. The

three classes of models considered were as follows: no memory, slot-based memory, and

continuous resource memory. The search strategies were either nearest first or random.
For each memory-strategy combination, scan paths were generated for each of the 20

searches within a trial. An assumption shared by all models was that once an object was

visited, it was removed from the set of possible next visits until the next target was

announced.

3.1. No memory model

This model served as a theoretical baseline for the other models and searched the dis-

play for every search within a trial without any memory for previous targets or distrac-

tors. In the random search version, the model searched the display in a random fashion.

In the nearest first version, the model allocated attention to the closest object to the one

currently being fixated. No parameters were varied in this model.

3.2. Slot-based memory models

This class of models had a slot-based memory, and the number of slots available ran-

ged from 0 to 10. Slots were instantiated as a queue (FIFO) based on the human fixation

history prior to the current search (see Fig. 4). Uncovering a label reinstantiates slot 0

and pushes the label contained in slot i into slot i + 1. This corresponds closely to the R
denotation in the above analysis of human Recency data. At the start of every search, the

model queried its slot-based memory to determine whether the target was already present

in one of its slots. If it was, the model immediately directed its attention to the target’s
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location. If the target was not stored in a slot, the model searched the display in either a

random or nearest-first manner. Only the number-of-slots parameter was varied in this

model type.

3.3. Continuous resource memory models

This class of models also relied on the eye fixation history of the trial prior to the cur-

rent search, but rather than merely considering the order of fixations the continuous

resource models incorporate both fixation recency (i.e., the time stamps of when the item

was fixated) and frequency (i.e., how many previous fixations were made to the item).

We used the declarative memory activation component of the ACT-R cognitive architec-

ture to model memory as a continuous resource (Anderson, 2007). While this activation

equation is typically applied to declarative knowledge within the scope of ACT-R model-

ing, we felt this would be a relevant, useful, and appropriate approximation for the “acti-

vation trace” of an item stored in VWM.

The ACT-R memory equation was applied to each of the items on the screen at the

beginning of each search. The activation of a given item i in memory is calculated as fol-

lows:

Ai ¼ ln
Xn

j¼1

t�d
ij þ bi þ ei ð1Þ

where j represents a fixation on the item and tij a time stamp of how recently the item

was seen on fixation j, �d a decay value, b a base-level constant offset, and e logistically

distributed transient noise with a mean of 0 and a standard deviation of r.
The activation of the target item was recalculated at the beginning of each search and

the model checked whether the activation of the target was above the threshold, T, and if

so, moved attention directly to the known location of the item. If Atarget \T , the model

selected and encoded another item based on either a random search or a nearest-first
strategy. If the target item was still not found, activation was recalculated for the target

at each additional movement of attention. Four parameters were varied in the context of

ACT-R’s memory equation (d, b, T, and r) to find the best fit to the human recency and

frequency data using MindModeling.org (Harris, 2008). In particular, we varied the

Fig. 4. Slots are instantiated corresponding to the timeline of fixations in the human data.
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parameters as follows: d: [0, 1], b: [0, 10], T: [0, 20], and r: [0, 5]. This created a total

of 27,951 parameter combinations for each search strategy.

3.4. Model evaluation

Each of the above models was evaluated on all trials (and searches) obtained from

human data.1 As the ACT-R memory equation uses recency and frequency information as

sources of activation for a given chunk in memory, we examined the human data as a

function of both the recency and the frequency of previous fixations to current targets. In

this case, recency R refers to how many fixations ago an item was last fixated relative to

the current fixation. For each parameter set, summary statistics were calculated to deter-

mine the percentage of all trials on which the target was seen R fixations ago or was pre-

viously fixated F times and found in N fixations. This resulted in 10 distributions for

recency and another 10 for frequency, each with 11 data points (one for each N of fixa-

tions to find the target, see Fig. 3 for human data). Then the root mean squared error

(RMSE) and R2 scores were calculated for each target recency curve and for each target

frequency curve.

A composite goodness-of-fit measure was created to combine the R2 and RMSE mea-

sures to capture both the shape and the magnitude of the differences between human data

and model predictions. Because best fits according to R2 are values closer to 1, and best

fits according to RMSE are values closer to 0, we rescaled the R2 measure (1 � R2) and

computed an average of all curves for each parameter setting.

The best-fitting slot-based model was one which contained two slots (i.e., “remem-

bered” the last two items previously fixated; see Table 1). The best-fitting continuous

resource model resulted from the following parameter settings: d = 1, b = 1, T = 10, and

r = 4.0 (see Figs. 5 and 6, green dashed line).

The no-memory model established a baseline with which the other memory models

could be compared. As can be seen in Table 1 and Figs. 5 and 6, the continuous resource

memory model captured human performance much more closely. In particular, whereas a

slot-based memory with two slots was the best fitting in this particular class of models, it

failed to capture the shape of both the recency and frequency distributions. The

Table 1

Best fits for all model types

Memory Strategy Composite Score*

Continuous resource Nearest first 0.09 (.005)

Continuous resource Random 0.11 (.006)

Slot (2) Random 0.35 (.008)

Slot (2) Nearest first 0.37 (0)

None Nearest first 0.38 (0)

None Random 0.39 (.009)

Note. Values in parentheses indicate the SD of 1,000 model runs.
*Lower composite scores indicate better model fits.
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Fig. 5. Model fits of recency for best-fitting slot, continuous resource, and no-memory models. Numbers in

upper left corner indicate how long ago item was last fixated (R). Each data point in continuous memory

model is 1,000 runs of the model.
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Fig. 6. Model fits of frequency for best-fitting slot, continuous resource, and no-memory models. Numbers

in upper left corner indicate how many times an item had previously been fixated (F). Each data point in con-

tinuous memory model is 1,000 runs of the model.
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continuous resource model, on the other hand, exhibited the same bell-shaped curve with

gradual drop-off as the human data for both recency and frequency. Furthermore, a near-
est-first search strategy was marginally better at capturing the effects than a random
search model, suggestive of the type of strategy participants may have used as they con-

ducted their search of the display.

We further evaluated the flexibility of all the model types to determine how convincing

the fits actually are and whether they could have been achieved merely by searching such

a large parameter space. Model flexibility analysis (MFA) was used to calculate the pro-

portion of all empirical outcomes that each model could have potentially fit (Veksler,

Myers, & Gluck, 2015). Although the slot model only has one parameter (number of slots),

it is actually more flexible than the continuous resource model with four parameters: MFA

revealed flexibility for the slot model to be / = .14; the continuous resource model, on the

other hand, had a flexibility value of / = .014. Thus, the continuous resource model makes

more precise predictions and is less flexible, as the results of the model runs cover less of

the potential behavioral space. Furthermore, we ran each model 1,000 times to obtain an

estimate of the variability between model runs and found that the performance measures

and composite scores are fairly stable, with standard deviation across the 1,000 model runs

being on the order of .005–.009 across the various model types.

3.4.1. Avoidance
Although the analyses and model results so far indicate that participants find targets

faster when they have fixated those labels more recently or multiple times prior to the

current search, we also wanted to address the issue of whether VWM is used to facilitate

Fig. 7. Probability of retrieval of an item fixated on a given fixation in a search. The first fixation in a

search was the target of the previous search.
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the search by avoiding labels on the display that had previously been fixated and are cur-

rent distractors.

If memory was used in this way, we would expect that the first few fixations in a

search would be to labels not previously fixated or at least fixated a long time ago and no

longer in the memory trace. Using the ACT-R memory equation, we calculated the proba-

bility of retrieving a label from memory given its fixation history and found that labels

(which are not the current target) fixated first in a search actually had a higher probability

of being retrieved, R2 ¼ :30 (see Fig. 7). This suggests that even though those labels

could presumably have been recalled and confirmed to not be the target, there was no

avoidance strategy to not fixate them throughout the search.

4. Discussion and conclusions

In the current work, we explored why variability in VWM capacity may at times exhi-

bit variable precision and capacity. The new paradigm of repeated serial search allowed

us to more readily observe the specific shifts of visual attention that occur during natural

search. Human data suggest that the variability in VWM precision and capacity is closely

tied to selective attention as search progresses.

Selective attention directly affects the ease with which subsequent targets can be

found, with both recency and frequency of fixations playing a role in subsequent searches.

Items that were previously fixated more recently resulted in faster search times and

boosted the likelihood of recalling the location of the target. Likewise, items which had

previously been fixated more often were easier to find. Importantly, there was a stronger

mnemonic trace for items which were previous targets as these items were found faster

than those which were only fixated as distractors during previous searches.

We contrasted two types of models of VWM: a slot-based and a continuous resource-
based model. In the case of the slot-based model, the recency of a label’s encoding is

taken into consideration to facilitate subsequent searches. However, this was not sufficient

to accounts for the human data as it failed to capture the shapes of the distributions in

both recency and frequency domains. A continuous resource model, on the other hand,

directly incorporated both effects of selective attention. The continuous resource was

instantiated as the label’s activation, computed by taking into account both the frequency

and recency of previous label fixations.

One limitation of the current approach is that neither of the model types explicitly

accounts for the stronger mnemonic trace for prior targets. The continuous resource

model could potentially account for this difference by including a label’s fixation duration

in its computation of activation, as targets typically exhibit longer fixations and more

opportunity for rehearsal. While such models are beyond the scope of the current work,

they are an interesting avenue for future research.

In conclusion, the repeated serial search paradigm elucidates the variability seen in

VWM capacity and precision by taking into account a formal notion of selective atten-

tion. Future work could apply the same continuous resource model to other data sets to
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explore the robustness of the model in accounting for various VWM results, as well as

incorporating potentially hybrid models which combine memory slots and continuous

resources.
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