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Task-Based Visual Interactive Modeling:
Decision Trees and Rule-Based Classifiers
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Abstract—Visual analytics enables the coupling of machine learning models and humans in a tightly integrated workflow, addressing
various analysis tasks. Each task poses distinct demands to analysts and decision-makers. In this survey, we focus on one canonical
technique for rule-based classification, namely decision tree classifiers. We provide an overview of available visualizations for decision
trees with a focus on how visualizations differ with respect to 16 tasks. Further, we investigate the types of visual designs employed,
and the quality measures presented. We find that (i) interactive visual analytics systems for classifier development offer a variety of
visual designs, (ii) utilization tasks are sparsely covered, (i) beyond classifier development, node-link diagrams are omnipresent,

(iv) even systems designed for machine learning experts rarely feature visual representations of quality measures other than accuracy.
In conclusion, we see a potential for integrating algorithmic techniques, mathematical quality measures, and tailored interactive
visualizations to enable human experts to utilize their knowledge more effectively.

Index Terms—Decision trees, rule-based classification, visual analytics, interactive machine learning, interactive model analysis, survey,

visualization

1 INTRODUCTION

NTERACTIVE machine learning has gained large interest in

the visualization and visual analytics community [1], [2].
However, visualizations need to match the demands of dis-
tinct analysis tasks [3]. Visual analytics promises to provide
exceptional matches by offering specialized, bi-directional
interfaces between analysts and machine learning mod-
els [4], [5]. From the assertions above we can expect that dis-
tinct visualizations, suitable for different analysis tasks,
have been developed.

Visualization can facilitate steps along the analysis work-
flow in at least two ways: First, visualizing the data aids in
spotting outliers in training data and predictions. Second,
representing abstract models visually can support under-
standing [6]. For example, the data flow through a decision
tree can be explicated by augmenting nodes with class distri-
butions [7]. Additionally, visual analytics introduces the
direct manipulation of the underlying model to enable the
integration of domain knowledge in model construction, for
instance by adjusting split values of a decision tree [8].
Further, targeted what-if analyses facilitate the diagnosis of
malfunctions. Once sources of errors are identified, problems
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can be fixed and resulting changes can be observed immedi-
ately. Within classification, several distinct analysis
tasks/steps can be identified, including model building and
refinement. All steps can benefit from the close involvement
of human analysts via visual interfaces.

As a result, (interactive) visualization, and visual analytics
in particular, are central angles of attack for improving
machine learning models [4], [5]. At the same time, visualiza-
tion can provide the foundation for the utilization of con-
structed models, as well as the extraction and communication
of new insights gathered from modeling a classification prob-
lem. Therefore, it is in the interest of the visualization and
visual analytics community to obtain an overview of what
kinds of visualizations are available for solving tasks in inter-
active modeling and machine learning [9].

In this survey, we investigate whether visual designs
actually diversify and are tailored more closely to individ-
ual tasks, or whether general-purpose visualizations flour-
ish. We restrict the survey to decision trees and rule-based
classifiers, which are one of the canonical types of classifier
models. (More details on this choice follow in Section 2).
This restriction lowers the barrier for readers who use this
survey as an entry to visual interactive modeling/machine
learning, and highlights a topic that has attracted repeated
interest by scholars and practitioners. Furthermore, the spe-
cialized focus avoids potential confusion introduced by
mixing miscellaneous types of models. In consequence, it is
straightforward to compare differences between visualiza-
tions across tasks, while an abstract and model-agnostic set
of tasks enables the generalization of results. Future evalua-
tions may build on our survey in order to substantiate
design defaults and guidelines, which potentially can be
transferred to the visualization of other types of machine
learning models.
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Fig. 1. Decision tree addressing a risk assessment task in an emergency
room. Based on observed symptoms, patients are classified into a risk
class: high risk or low risk. How a single patient is classified is transpar-
ent as depicted by the blue trace representing one exemplary patient,
who is classified as having a low risk. Data by Breiman et al. [10].

For clarification, we cover decision tree classifiers, which
we call decision trees throughout this paper (see also
Section 2). In the supplementary material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TVCG.2020.3045560,
we provide a more detailed primer for readers who are not
familiar with using decision tree models for classification.
Other notions of the term “decision tree” as, for example,
used in decision theory [11], [12], expert systems [13], [14],
operations research [15], or decision support systems using
forecasting [16] lie beyond this scope. Similarly, diagnostic
trees that depict class prevalence, and the Recall/Sensitivity
and Specificity of binary classifiers [17] share some aspects,
but cannot be reasonably covered. To complement our sur-
vey, we present a brief comparison of these other meanings
and how visualizations have been part of their history in
the supplementary material, available online.

In contrast to previous work on tree visualizations [18],
[19], [20], [21], [22], our focus is not only on the visual
designs. Instead, we focus on how visualizations match the
analysis tasks in classification. Endert et al. [23] present a
broad view on integrating machine learning into visual ana-
lytics for dimension reduction, clustering, classification,
and regression from the perspectives of models and frame-
works, techniques, and application areas. More generally,
Jiang et al. [9] summarize recent advances in interactive
machine learning. Finally, Sacha et al. [2] propose an ontol-
ogy integrating visualization and machine learning. By con-
trast, our survey details on available visual representations.
The survey of Liu and Salvendy [24] is most closely related
to our work. In 2007, they surveyed the aspects visualization
of tree models, visualization of tree evaluation, and visual
interactive tree construction. We present an updated over-
view of the topic and consider a broader scope of analysis
tasks. Thereby, we advance the research on task-based visu-
alization and point out open questions about how to tailor
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AND Sinus Tachycardia present = false | | | |
THEN High Risk = false

Fig. 2. Rule set equivalent to the decision tree in Fig. 1. The bars at the
right show how many of 100 patients each rule covers. Figure inspired
by Firnkranz et al. [25].

visualizations and visual analytics systems closely to task
demands. In particular, we contribute:

a survey of visualizations for decision tree classifiers,
a categorization of visualizations from 152 publica-
tions by 16 tasks and a comparison across these
tasks, and

e an outlook on open questions and opportunities in
visual interactive modeling and machine learning.

Additionally, we include categorizations by the types of
visual designs employed, as well as the numeric quality meas-
ures displayed, and briely discuss the lack of evaluation stud-
ies. In the next section, we introduce the concept of decision
tree classifiers and provide details on our choice for focusing
on this type of models. In Section 3, we describe our method-
ology and present an overview of results. Afterwards, we
present detailed results grouped by three perspectives,
namely Classifier Development (Section 4), Classifier
Utilization (Section 5), and the Descriptive Modeling of Classi-
fication Processes (Section 6). Based on these results, we dis-
cuss the role of visualization and visual analytics across
analysis tasks, visual designs and quality measures, in
Section 7. Resulting findings lead us to Open Questions
and Opportunities, which we present in Section 8.

2 DEcISION TREES AND DECISION RULES

Compared to other types of classifier models, decision trees
closely resemble human reasoning. Hence, they are more
transparent and easier to understand [26]. Further, classifica-
tion trees lend themselves to visual representation, for exam-
ple, as a node-link diagram in Fig. 1, which supports
comprehensibility. In the training process, decision trees
require comparatively few observations and can be refined
interactively [27]. Decision trees can also be robust and fast
in application [28]. For instance, features are applied sequen-
tially and only need to be measured on demand.

Other types of machine learning classifiers, for instance,
based on deep learning [29], achieve promising results in sev-
eral scenarios [30]. However, their inherent lack of interpretabil-
ity can be problematic [31]. Thus, decision trees are especially
useful when human comprehension or interaction with the
model is required. This includes applications in contexts that
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demand high levels of trust requiring a thorough understand-
ing and validation of classification processes [32], the manual
execution of a classification procedure to enable decision-mak-
ing [33], as well as gaining new insights from data [34].

For our survey, decision trees in combination with rule-
based classifiers are a perfect choice for several reasons.
Beyond the more general positive aspects summarized above,
decision trees are a canonical part of most introductions to
classification with machine learning. Second, the combination
of a long history of investigation and up-to-date research is
beneficial. Finally, decision trees are widely used in visualiza-
tion and practical application. In this paper, we consider rule-
based classifiers as a subset of decision trees, namely the non-
branching trees with nodes created from the list of rules.
Alternatively, every tree can be represented as a set of rules
by formulating each path through the tree as a rule. Classifica-
tion rules are not to be confused with association rules, which
do not target classification [37]. Fig. 2 shows a set of classifica-
tion rules that is equivalent to the decision tree in Fig. 1. For
example, the decision rule “If Minimum systolic blood pressure
> 91 and Patient’s Age > 62.5 and Sinus tachycardia is not
present, then High risk = false” is equivalent to the path
highlighted in Fig. 1. The bars on the right-hand side of Fig. 2
depict how many instances of the underlying dataset are clas-
sified by each rule (i.e., their coverage).

Apart from extracting classification rules out of a classifi-
cation tree, they can also be induced directly from datasets.
This process is called rule set induction, for which a variety
of algorithms have been proposed [25]. Compared to the
exclusive paths in decision trees, in principle, decision rules
may overlap. As a result, multiple rules cover the same
instances, which demands for a mechanism to break ties of
overlapping rules predicting contrary classes. For example,
rules can be ordered as a list and the first rule that applies
determines the prediction [38], [39], which leads to a struc-
ture that, again, can be represented by decision trees.

3 METHODOLOGY AND OVERVIEW OF RESULTS

In this survey, we cover visualization journals such as
TVCG, CG&A, CGF, IV as well as the VIS, EuroVis, and Dia-
grams conferences. We complement the publications from
these established venues with publications from outside the
visualization and visual analytics community in order to
provide a broad overview. In particular, we apply a
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sampling strategy as depicted in Fig. 3, which also provides
an overview of the categorization process.

Main Sources. We primarily examined eight sources for
publications. For a rough comparison, the numbers in
parenthesis below indicate the sizes of initial result sets
based on the search terms decision tree or rule-based classifica-
tion, and wvisual*. The wildcard term wvisual* covers relevant
terms such as visualization, visualisation, and visual analytics.
The number of publications that actually present visualiza-
tions of decision trees is smaller. Further, some publications
are listed in multiple of the following sources:

e IEEE Digital Library (87, including VIS, TVCG,
CG&A)

ACM Digital Library (75, including CHI, IUI)
Eurographics Digital Library (50, including EuroVis,
CGF)

Pubmed (211)

PsycInfo (43)

ArXiv (37)

Information Visualization Journal (11)

Diagrams Conference (5)

Then, we manually filtered publications based on con-
tents, keeping all that demonstrate a decision tree as
described in Section 2.

Additional Sources. Based on this initial set, we consid-
ered references that are related to the topic. We added rele-
vant referenced publications, which are not already in our
sample. Finally, we included additional publications from
other sources, for example, recommendations of colleagues.
Obviously, we could not incorporate all published visualiza-
tions of decision trees. Nonetheless, extending our sample
beyond visualization and visual analytics venues, which we
cover extensively, adds a valuable outlook and records from
(scientific) practice.

Publication Sample. Following this strategy, we identi-
fied 152 publications featuring visualizations of decision
trees. They were published between 1989 and January 2020,
with most published after the year 2005 (112 of 150, 75 per-
cent, 2 NA). Fig. 4 shows the distribution of publications in
our sample over time.

Categorization. Based on an additional screening, the
first author distributed publications such that each was
coded by one of the authors. We categorized each decision
tree visualization identified in the publications along three

152 Publications Categorization Results
Initial set } [ 16 Tasks }
[ Related } . Code visualizations [9+16 Visual designs}

[15 Quality measures}

Fig. 3. Selection of eligible publications and categorization of visualizations. Eight main sources covering major visualization venues build the founda-
tion of our sample. Based on a keyword search and manual filtering, we derive an initial set of publications. Following references, we add related pub-
lications. Additional publications from other sources such as colleagues’ recommendations broaden the sample. For the categorization of
visualizations, we distributed publications among the authors. We categorize each visualization based on targeted tasks (cf. [35], [36]), applied visual
designs (cf. [24]), and represented quality measures (cf. [3]).
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Fig. 4. Number of publications over time. The development of novel visu-
alization techniques in the 1980s and early 1990s [18], [40], [41], [42] lays
ground for the visualization of decision trees, starting in the late 1990s.
There are some user-based evaluations of single systems and compari-
sons to automatic algorithms, but comparative experiments between

visual designs are rare. References to individual publications can be
found in Section 8 and the supplementary material, available online.

dimensions: i) Analysis task, ii) Type of visual designs, and
iii) Quality measures displayed. Once all visualizations
were coded, the first author double checked codings. We
present results aggregated by publication, as observations
on the level of visualizations are heavily influenced by pub-
lications that present many, identically designed, visualiza-
tions for presenting and comparing multiple decision trees.

Analysis Tasks. We distinguish between 16 analysis tasks
in total. Most of these tasks directly relate to the steps in Classi-
fier Development and Classifier Utilization (cf. [35], [36]). Fur-
ther, we identified two tasks in the context of the Descriptive
Modeling of Classification Processes and the Concept Intro-
duction task. Fig. 5 provides a structured overview. Detailed
descriptions of individual analysis tasks can be found below,
in Sections 3.1-6. We assigned visualizations designed for, or
practically used for, dealing with a task to its category. Fig. 6
shows the distribution of publications across tasks.

Visual Designs. We distinguish between two types of
visual designs. First, the tree structure can be represented
by node-link diagrams, treemaps, or the like (cf. [24]). Sec-
ond, more complex systems integrate additional visual com-
ponents, for example, by encoding class distributions as
pipe diagrams (see Fig. 10 below). Some visualizations and
most visual analytics systems combine different designs.

Quality Measures. As a third dimension, we tracked
which numeric measures for the quality of classifiers, such
as Accuracy, Recall/Sensitivity, Gini-index, or Frugality vis-
ualizations depict (cf. [3]). Appendix A, which can be found
on the Computer Society Digital Library at http://doi.

Classifier Development
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Fig. 6. Number of publications per analysis task. Most visualizations are
designed for the steps in Classifier Development (blue). Except for Pre-
sentation, tasks in Classifier Utilization (peach) and the Descriptive
Modeling of Classification Processes (green) are addressed rarely. Fur-
thermore, visualizations are commonly used to introduce the concept of
decision trees (gray). Task descriptions and individual references can be
found in Sections 3.1-6 and the supplementary material, available
online, respectively.

ieeecomputersociety.org/10.1109/TVCG.2020.3045560,
briefly introduces the measures displayed in our sample.

We present the results along the analysis tasks. The tasks
are grouped by the steps in Classifier Development (Section 4),
the tasks in Classifier Utilization (Section 5), and approaches
to the Descriptive Modeling of Classification Processes (Sec-
tion 6). Sub-sections detail on individual analysis tasks. Before
diving into Classifier Development, we have a look at the vis-
ualizations used for introducing the concept of decision trees
in the following Section 3.1. In Section 7, we present findings
across tasks, which are complemented by a tabular overview
in the supplementary material, available online.

3.1 Concept Introduction

The goal of the Concept Introduction task is to help novices to
understand how decision tree models work in general, not
focused on a particular tree. For instance, a visualization out-
lines the hierarchical structure of decision trees, or explains
the sequential application as in Section 2 and Fig. 1.

There are mainly two scenarios for using visualization
when introducing the concept of decision trees: On the one
hand, introducing decision trees to people and domains that
have not been using them before [45], [46], [47]. On the other
hand, researchers explain new concepts going beyond the
state-of-the-art [48], [49], [50]. Visualizations used for Concept

Classifier Utilization Descriptive Modeling of

B Classification Processes
g

8 ___ Understanding Comparison Presentation Decision Modeling

= Model Building Oy T~ : ;

5 " Evaluation — Diagnosis — Refinement : Ensemble Building : Application Model Approximation

<} :

© Provenance Reporting Monitoring ~ Assessment

Fig. 5. Structured overview of analysis tasks. Concept Introduction (gray, see Section 3.1) deals with educating novices about decision trees. In pre-
dictive scenarios, there are two main stages. First, a classifier is developed (blue, Section 4), then, it is utilized in the target environment (peach, Sec-
tion 5). In descriptive scenarios (green, Section 6), decision trees are used to describe observed decision processes or black-box classifiers as if
they were decision trees. While some tasks like Model Building and Application can be (partially) automated, others including Understanding heavily
involve human analysts. The iterative Refinement is central to the interactive modeling process. Provenance and Monitoring run in parallel to the
main workflow, whereas Reporting and Assessment summarize the process/performance within a pre-defined period of time.
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1 paint

Fig. 7. Workflow and visualization of the StarClass/PaintingClass sys-
tem [43], [44]. During model building, analysts use re-projection and
painting of regions at the different levels of the hierarchy to effectively par-
tition classes in the instance space. Image by Teoh and Ma [43, Fig. 6].
Copyright © 2003 Society for Industrial and Applied Mathematics.
Reprinted with permission. All rights reserved.

Introduction are clean and focus on the tree structure consist-
ing of decision nodes and leaf nodes. Predominantly, a small
decision tree is visualized as node-link diagram. No addi-
tional information beyond the attributes considered at deci-
sion nodes and applied cutoff values are presented.
Sometimes group sizes are added, which explicates the split-
ing into sub-groups. Restricting visualizations to the bare min-
imum is in line with the goal of explaining fundamental
mechanisms instead of peculiarities of a particular example.

4 CLASSIFIER DEVELOPMENT

Classifier Development, in machine learning, is driven by a
machine training a model based on a dataset. While estab-
lished algorithms automatically generate a decision tree, the
whole process is iterative, including the manual tasks of Eval-
uation, Diagnosis, and Refinement to name a few. Thus, prac-
tical approaches are often semi-automatic. Visual analytics can
provide powerful interfaces for interactive machine learning.

4.1 Model Building

Model Building is the process of generating classification trees,
either automatically [51], or interactively by an analyst [52].
The only human inputs required by fully-automated, algorith-
mic approaches are a training dataset and global parameters,
such as splitting criteria [53]. Visualization and visual analytics
facilitate interactive Model Building by providing rich interfa-
ces [7]. In this case, analysts use the training data and quality
measures, but steer the building process through manual
intervention. This way, the analyst introduces domain knowl-
edge to the model, which can improve its effectiveness, and
can enforce domain-specific requirements [8], [54].

Prior to Model Building, visualization and visual analyt-
ics can play an important role in data preparation and
exploratory analysis [55]. Here, we assume that the analyst
has already prepared a dataset. There are several approaches
for manual and interactive Model Building. Successful visu-
alizations enable analysts to keep track of the growing tree
by providing an overview, zooming and highlighting func-
tions. Liu and Salvendi [24], as well as van den Elzen and
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Fig. 8. The BaobabView system supports analysts with algorithmic sup-
port for selecting split attributes and presents suggestions visually. Bor-
der color indicates the goodness of the split as measured by the Gain-
ratio. Image by van den Elzen and van Wijk [7, Fig. 6].

van Wijk [7] present powerful visual analytics systems. At
the same time, the main effort in Model Building is to choose
nodes to expand and to determine appropriate split attrib-
utes and values. Visualizations facilitate the selection of fea-
tures by showing the distributions of values and by
displaying effects of potential partitionings [56], [57], [58].

A notable example for an interactive visualization tar-
geted at Model Building is the StarClass/PaintingClass sys-
tem by Teoh and Ma [43], [44]. Analysts draw decision
boundaries in two-dimensional projections of the instance
space to separate classes. An algorithm then builds a deci-
sion tree that splits the data according to these decision
boundaries. Fig. 7 shows the workflow used to construct a
tree based on continuous attributes.

Van den Elzen and van Wijk [7] present BaobabView, an
extensive visual analytics system offering numerous inte-
grated views and interaction mechanics. Additionally, algo-
rithmic support suggests good options, for example, for
split attributes and split values. Fig. 8 shows suggested split
attributes including the distributions of values.

4.2 Evaluation

Evaluating the quality of constructed trees is crucial. While
the general predictive qualities of classifiers can be evalu-
ated automatically using quality measures and a separate
test set of previously unseen data (i.e., cross-validation),
more sophisticated Evaluation requires the involvement of
human analysts [3]. The broad Evaluation of decision trees
covers multiple objectives, such as global performance, per-
formance regarding a class of special interest, tree size or
structure, and application cost. Human analysts aim at fig-
uring out how well decision trees match these demands.
Based on the Evaluation, they decide on further steps, for
instance, whether or not refinements are necessary.

The confusion matrix is a simple model-agnostic tool for
evaluating the global performance [28], [59]. It can be
enriched visually, for example, by mapping the number of
instances in each cell to colored areas [7]. Another common
visual tool is the ROC plot, which depicts the prediction
quality as measured by Recall/Sensitivity and Specific-
ity [28], [60]. These model-agnostic techniques are invalue-
able complements to visualizations particularly designed for
decision trees. Alsallakh et al. [61] present an overview of
visual approaches for the Evaluation of classifiers. Visualiza-
tions targeted at decision trees enable analysts to inspect the
tree structure after (automatic) Model Building [24], [62],
[63], [64]. Interaction capabilities, like pan-and-zoom, are
key to handling large trees. In practice, Evaluation is inter-
woven tightly with other tasks. For example, in interactive
Model Building, the continuous Evaluation of the model is
commonplace. Although quality measures play an impor-
tant role in Evaluation, only a few visualizations present
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Fig. 9. Compact, yet comprehensive, visualization of numerous perfor-
mance metrics to evaluate the predictive qualities of a classification tree.
Image by Philipps et al. [28, Fig. 6] .

quality measures. While Accuracy is the most prominent
measure, some visualizations also include some other qual-
ity criteria (e.g., [7], [65], [66]). Noteably, the visualization of
Philipps et al. [28], in Fig. 9, presents a multitude of quality
measures, next to a confusion matrix and an ROC plot.

4.3 Understanding

Understanding describes the task of generating an overview
of a decision tree and its underlying data, as well as brows-
ing its complete structure. This includes the overall compre-
hension of the model and its fitness to the classification task
at hand [67]. Generally, Understanding is tightly interwo-
ven with other stages like Model Building, Diagnosis, and
Refinement. However, in contrast to these stages, Under-
standing considers a more abstract level without investigat-
ing particular data instances or classes.

When investigating classification processes, getting an
overview of all decision nodes is essential. Node-link dia-
grams are the most commonly used technique for depicting
the tree structure [24], [68], [69]. They enable analysts to follow
the classification process of decision trees [64]. BaobabView [7]
also implements another approach by representing decision
nodes as labels in front of class distributions. Links show the
data flowing from parent to child nodes. This type of visual-
izations is known as pipe diagram [42]. Pipe diagrams provide
a complete overview of the classification process, as depicted
in Fig. 10. Icicle plots [40] are a more compact option [56].

Understanding is a central step in scientific research. With
the adoption of decision trees for data analysis, more and
more visualizations of decision trees are published. While the
primary visualization task in the publication is Presentation,
readers need to fully understand the decision tree in order to
comprehend its scientific value. Taking the constraints of pub-
lication media into account, most visualizations are minimal-
istic node-link diagrams [70], [71]. Sometimes nodes are
augmented with additional visualizations, such as pie charts
or bar charts [72], [73]. In print media, visualizations with
multiple views are rare [74].
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Fig. 10. BaobabView system showing the partitioning of instances. Cor-
rect predictions are visible (A1, A2) and mis-classifications stand out
(B1, B2). Image by van den Elzen and van Wik [7, Fig. 13].

While these visualization approaches are intended to
enable the Understanding of the classification process, mul-
tiple or complex decision trees demand more than a single
visualization technique to highlight all important aspects.
Commonly, to be more expressive, visual analytics systems
combine different views and link them through interactions,
such as cross-filtering or linking-and-brushing. RuleMa-
trix [75] is an example of such a system for visualizing clas-
sifier rules. More recently, Jia et al. [76] visualize surrogate
decision trees of convolutional neural networks. Similarly,
GBRTVis [77] integrates views for analyzing gradient boost-
ing regression trees.

4.4 Diagnosis

Diagnosis describes the process of unveiling failures of clas-
sifiers and errors in datasets when solving a problem with a
classifier model [78]. Problems in trained models or the
underlying dataset need to be identified. With the gained
knowledge, analysts can correct wrong data labels and
anticipate means to improve model performance [35].
Already in interactive Model Building, it is possible to spot
errors in the dataset by continuously predicting instances
and inspecting mis-classifications [7]. The focus on identify-
ing sources of errors and potential remedies distinguishes
Diagnosis from the more general tasks of Evaluation, and
Understanding.

In many cases, visualizations are employed to diagnose
the decision paths followed to classify instances. Often, an
inspection of an individual path unveils problems of the
training dataset towards the test dataset and vice versa.
Similarly, over-fitting issues can be accounted for by prun-
ing [62]. Mainly, node-link diagrams and pipe diagrams are
used to identify wrong paths and find pruning targets
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Fig. 11. The BOOSTVis system enables analysts to inspect boosted
ensembles of decision trees and to diagnose why certain combinations
perform better. Image by Liu et al. [78, Fig. 1].

[7], [78], [79]. Interaction helps to investigate splits leading to
poor partitioning [80]. Enhancing these visualizations with
data about the attributes and, for example, their distribu-
tion [7], [81], enables the generalization from particular sam-
ples to the whole dataset. On the level of single splits,
diagnosing errors in attributes is possible [82]. Further, fail-
ures in techniques, such as ensemble learning, can be
identified [78].

For instance, the BaobabView system [7] features various
interaction techniques and visualizations. The interactions
analysts can perform and the visual mapping to pipe dia-
grams enable a deep-dive into the inner-workings of decision
trees. Further, complementary visualizations (similar to
Fig. 8) at the nodes help to learn more about the distribution
of instances throughout the decision tree. The BOOSTViis sys-
tem [78], shown in Fig. 11, generalizes this approach to the
Diagnosis of boosting tree ensembles combining several deci-
sion trees. It utilizes pipe diagrams and node-link diagrams
to highlight weak decision trees, and attribute splits. With
these visualizations, it is possible to identify attributes that
are more heavily used for a split after subsampling.

4.5 Refinement

As available training data and automatic algorithms (with all
their assumptions) rarely match perfectly, trained models
often need further improvements to solve targeted classifica-
tion problems. Such Refinement regularly leads to optimized
and improved models [35]. Most refinements originate from
findings of a previous Diagnosis and tackle specific prob-
lems. For instance, pruning decision trees may increase gen-
eralization [62]. In most cases, Refinement incorporates
human domain knowledge to automatically built models
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post hoc. These refinements steer models in directions that
analysts can relate to their mental models [35].

Interactive pruning is a common capability of visual ana-
lytics systems [7], [62]. With a more in-depth Diagnosis, it is
possible to identify intricate problems, such as a leaf node
that should be split, but is not split correctly due to global
parameter settings. In such a case, an analyst is able to
resolve the problem by selecting a split by custom attributes
and split values. Overall, we find few visulizations designed
for Refinement. Most likely, this is the case as Refinement is
especially closely coupled with Diagnosis and the interaction
capabilities required for Model Building. Meanwhile, visual
analytics systems excel, as they are build for directly interact-
ing with data and models. The BaobabView system [7] men-
tioned above incorporates such interaction tools. In Fig. 10,
highlighted leaf nodes can be pruned as they hardly separate
the instances, but over-fit the training dataset.

4.6 Comparison

Comparison supports model selection for a particular classifi-
cation problem at hand. Analysts may compare the overall
performance, or even the performance within subsets of the
data, between two or more models. For example, the ROC
plot at the bottom right of Fig. 9 can be utilized to compare
different classifiers. The decision trees’ structures can also be
of interest. In this case, the Comparison goes beyond report-
ing on quality measures for selecting an appropriate model.
For instance, comparing how meaningful the splits in one
data dimension are enables selecting a model that segments
the data in a way that makes most sense for domain experts.

Comparing decision trees visually enables domain
experts to manage trade-offs, such as balancing perfor-
mance and cost. By putting the human in the loop, domain
experts can perform comparisons along multiple dimen-
sions, which are hard to automate. With an increasing num-
ber of trees to compare, there remains less space for each
individual tree. As a result, some visualizations build on
compact representations such as treemaps [66] and icicle
plots [65]. Comparing trees (and other classifiers) solely
based on quality measures is also common [28], [83], [84].
However, often the differences between two trees need to
be investigated in detail. Node-link diagrams show the
trees’ structures more explicitly and are common when only
two decision trees are on display [8], [85], [86].

The TreePOD system [66] enables analysts to explore a
broad set of automatically generated candidate trees. Besides
the typical node-link diagram to show tree structures, it
offers compact pixel-based treemaps (see Fig. 12). Presented
in a small-multiples layout, the treemaps facilitate the com-
parison of a variety of trees. They convey qualitative aspects
of the accuracy (measured by Fl-score) and complexity
(Size) of Pareto optimal trees and thus provide analysts with
the information needed to find a suitable tree from the gener-
ation algorithm’s parameter space.

4.7 Ensemble Building

Combining models in an ensemble often leads to an ensem-

ble model with strong predictive qualities. In Ensemble

Building, there are several strategies for combining the out-
uts of different classification models, as well as a multitude
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Fig. 12. TreePOD system: Analysts can compare several candidate
trees in compact pixel-based treemaps, which encode qualitative
aspects of Pareto optimal trees. Image by Mihlbacher et al. [66, Fig. 1].

of approaches to generate individual models. For instance,
random forests, in their most common form, are ensembles
of decision trees trained using different random subsets of
data features. Model developers build ensembles using
ready-made algorithms or by customizing their outputs.
Visualizations can support the ensemble building by show-
ing details of the set of models constituting the ensemble.

Visualization and improved interpretation can support
the Diagnosis and Refinement of ensembles [78] (see also
Fig. 11). For instance, analysts visualize and compare fea-
ture importance on different trees to help feature engineer-
ing [88]. As with the Comparison task, the large number of
trees within the ensemble is challenging. Thus, abstracting
from individual trees and focusing on the ensemble’s pre-
diction can be a reasonable strategy for visualization [89].
The iForest system [87] offers analysts visualizations to
understand and compare decision paths in random forests
(see Fig. 13). Analysts use the system to calibrate their trust
in an ensemble’s predictions by inspecting how the ensem-
ble works, and analyzing training data that is most similar
to new inputs. Solving a problem using similar instances is
known as case-based reasoning [90].

4.8 Provenance and Reporting

Provenance captures the Classifier Development process over
time. Resulting timelines can be especially useful for analysts
to track progress, resume, and return to earlier model states.
However, we find few visualizations of provenance, except
for a table of quality measures tracking recent changes [91],
and some visualizations contrasting training performance of
novel techniques against established methods [92]. For very
large datasets and more complex ensemble models, supervi-
sion of the training process can be useful, for example, via a
line chart showing the classifiers prediction quality over
training time [92, Fig. 1]). Looking beyond decision trees,
there are more general approaches for visualizing changes in
hierarchical structures [93]. A notable feature of decision
trees is that the tree itself is a representation of the training
process, as deeper nodes are expanded later in the building
process. Utilizing a hierarchical visualization like a node-
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Fig. 13. The iForest system represents the decision path flow merged
into a digraph to let analysts understand and compare all decision paths
in random forest models. Image by Zhao et al. [87, Fig. 3].

link diagram, therefore, enables analysts to track the prog-
ress of an automated algorithm.

By contrast to Provenance, Reporting generates an aggre-
gated summary of the process up to a specific point in time.
Reports can be used to update managers on recent changes
or to aid developers in resuming. For instance, a report may
include the model structure, performance characteristics,
and a list of important issues that were diagnosed and fixed.

Similar to Provenance, Reporting is not in the focus of
research. In our sample of publications, we could only find
one visualization designed for Reporting on the Classifier
Development process. Fig. 9 on page 6 shows the visualiza-
tion developed by Phillips et al. [28] for Reporting on a
developed classifier. The visualization combines a descrip-
tion of the problem at the top, details on the tree in the cen-
ter, and quality measures (also in comparison to alternative
classifiers) at the bottom.

5 CLASSIFIER UTILIZATION

Having constructed a classifier, automatically or interac-
tively, there are a number of tasks regarding its utilization [7].
By contrast to Classifier Development, now the decision trees
are fixed and ready for application. Adapting to the target
environment and not the training setup is a particular chal-
lenge (see also [3], [94]). Except for the Presentation of deci-
sion trees, this area attracted much less interest from
researchers than Classifier Development in the past.

5.1 Presentation

Presentation is often stated as one of the main tasks for visu-
alization [95]. In the case of decision trees, presentation
goals range from the description of a tree’s structure [64]
via lessons learned in the construction to presenting poten-
tial improvements of applying a new classifier compared to
the status quo. One particular use case for Presentation is the
visualization of decision trees in scientific publications that
make the classifier explicit for readers [96], [97], [98].

Most of the visualizations for Presentation that we find
target wide audiences. As a result, they apply the node-link
diagrams, which are well known. However, there are more
compact summaries as, for instance, by Kreiser ef al. [100].
They target a small audience and develop a special encod-
ing for their particular tree. A more typical example is given
by Tam et al. [99], who present the decision tree they created
for distinguishing between facial expressions. As shown in
Fig. 14, they highlight class distributions at nodes visually
by using color. Additionally, they explicate the rather com-
plex rules of the decision nodes.
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Fig. 14. Presentation of a manually created decision tree for discriminat-
ing between facial expressions. Class distributions and decision rules
are displayed in nodes and next to links, respectively. Image by Tam
etal. [99, Fig. 9].

5.2 Application

While classifiers are applied automatically from a machine
learning perspective, there are situations in which it is bene-
ficial to involve humans in the Application of a decision tree.
The (manual) Application can be relevant when access to
computing devices cannot be guaranteed or available time is
not sufficient to input measurements, for example, in the
case of emergencies. But even in case the execution of the
algorithm is performed automatically, involving humans
may be necessary to establish trust in predictions in general,
and to provide a reasoning for individual predictions.
Domain experts often know how a particular tree takes spe-
cific constraints posed by their tasks and domain into
account, and can estimate how well the training dataset
reflects the population in a particular application.

There are only few visualizations in our sample that are tai-
lored to Application. One such visualization is shown in
Fig. 15. It depicts the decision tree of the START triage proce-
dure [33] as an indented list. The visualization is intended to
be the size of a credit card and usable in the field. Starting from
the top, emergency responders can follow the procedure to
quickly identify those people who need immediate treatment.

5.3 Monitoring and Assessment

Checking whether a classifier works in practical application
can be done in two ways, either by the Assessment of perfor-
mance up to a specific point in time, or by Monitoring the
classifier continuously. Both tasks aim at rating how well a
classifier extrapolates beyond the training environment to
the real application environment [94]. They consume the
training and application data, next to the classifier as inputs.
Outputs include reports for managers in the case of Assess-
ment and permanent feedback to operators, which can be
used for spotting problems, in the case of Monitoring.

As with Provenance and Reporting, we rarely find visual-
izations for Monitoring and Assessment. The examples we
find are not from productive utilization of deployed decision
trees, but on validation datasets [102]. For example, a second
node-link diagram of the same tree showing class propor-
tions based on the validation data can be presented next to
the diagram based on the training data [96]. A more tailored
visualization shows class proportions in leaf nodes in, both,
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Fig. 15. START triage decision tree [33]. Reproduced from Critical Ill-
ness and Trauma Foundation, Inc. [101].

training and validation data [79]. In our sample, we only find
one visual analytics tool for building rules covering the
Monitoring task shown in Fig. 16 [103], despite the fact that
dataset shift [104], [105] and other limitations to generaliza-
tion demand for the Assessment and Monitoring of classifier
models in practice.

6 DESCRIPTIVE MODELING OF CLASSIFICATION
PROCESSES

In contrast to the previous sections, which deal with Classi-
fier Development and Classifier Utilization for prediction,
this section is about investigating classification processes by
means of modeling them as decision trees. In this context,
we identify two main tasks. Decision Modeling deals with
gaining insight into postulated or observed decision-
making. By contrast, Model Approximation focuses on
explaining previously constructed opaque classifier models.

6.1 Decision Modeling
Describing observed decision-making processes by decision
trees is the goal of Decision Modeling. It aims at matching the
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Fig. 16. View inspired by parrallel coordinates for monitoring the applica-
bility of filter rules to counter attacks on computer networks. Image by
Aupetit et al. [103, Fig. 5].
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outcomes of decisions with a suitable decision tree, and
investigating the observed process descriptively as if the
underlying decision process was the execution of a decision
tree. By contrast to prescriptive usages of decision trees, pri-
marily descriptive decision trees aim to enable insights and
are not intended to be applied.

Examples of descriptive trees explain how British courts
decide whether to make a punitive bail decision [106], and
how people decide whether or not to forgive another person
for an offense committed during social interactions [107].
Visualizations of proposed descriptive trees are typically
simple node-link diagrams that serve to illustrate the steps
required by the decision algorithm and to explicate the
threshold values for selecting branches [106]. In that respect,
the presentations do not differ from those designed for Pre-
sentation (discussed in Section 5.1). However, some visual-
izations for descriptive modeling compare multiple tree
variants, for example, created by systematically varying the
exit structure at decision nodes [107], [108], [109].

Moussaid et al. [74] employ a more advanced visualiza-
tion that provides two alternative views on their descriptive
model (see Fig. 17). They investigate when people are will-
ing to change their opinion by using a decision tree that cap-
tures two dimensions: i) How different is one’s currently
held opinion from the another? ii) Is the other person more
confident? The relation between the data and the model is
illustrated by a treemap an a node-link diagram.

6.2 Model Approximation
Explaining black-box machine learning models has been a
very prominent task in recent years [67]. Explainable Artifi-
cial Intelligence (XAI) discusses approaches to make complex
and opaque models more interpretable, while interactive
machine learning tries to provide solutions for analysts to
apply domain knowledge to models and refine existing clas-
sifiers. Both can be seen as methods to address the problem of
not easily accessible classifiers. One common method to
explain black-box models and to make a complex model
interpretable is Model Approximation by simplifying their
internal processes to surrogate decision trees. These surro-
gates are utilized as a proxy for the Understanding, Diagno-
sis, Comparison, and Evaluation of opaque models. In
addition, such surrogates can also be used as an interaction
interface for the target models, enabling the Refinement of
opaque models through visual analytics.

Surrogate decision tree models are some of the most
prominent approaches for increasing the interpretability of
neural networks [87]. However, finding the appropriate
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Fig. 18. Surrogate approximation of a neural network model using rule-
based explanations in the RuleMatrix system. Rows represent individual
rules and columns depict involved attributes. The pipe diagram on the
left explicates how ordered lists of rules coincide with the branching
structure of decision trees. Image by Ming et al. [75, Fig. 1b].

degree of simplification remains a challenge [117], as the
decision trees should approximate the process and perfor-
mance of the opaque target models, while remaining inter-
pretable. Approaches for visualizing classification processes
in neural networks using surrogate decision trees range
from using hashing neural networks [118], to the analysis of
convolutional neural networks [76], and gradient boosting
regression trees [77].

In contrast to visualizing surrogate models as simplifica-
tions, the RuleMatrix system [75] approximates complex mod-
els (here neural networks) by a list of classification rules. It
enables analysts to interact with the visual interface to explore,
as well as refine the opaque target model. Fig. 18 shows the
interactive visual interface. In each row, it displays one classi-
fication rule, which is composed of different attributes,
depicted as columns. This interactive approach is based on
user-defined rule filters to adjust the application of the under-
lying neural network to boost its performance. Such interac-
tive feedback is essential to enable model steering. However,
integrating the feedback into the opaque model is still an
open challenge, and an opportunity for future research.

7 THE ROLE OF VISUALIZATION AND VISUAL
ANALYTICS

Since visualization gained interest in the early 1990s the
number of visualizations of decision trees increased over
time (see also Fig. 4 on page 3). Especially in machine learn-
ing, visualizations facilitate tasks such as Model Building,
Evaluation and Comparison. While the introduction of new
techniques (e.g., [41], [114]) spurred novel visualizations of
decision trees [119], [120], node-link diagrams remain the
most common visual design by far. Only interactive visual
analytics systems regularly offer multiple views on tree
structures [65], [66], [79]. Going beyond tree structures and
showing more detailed visualizations as well is less com-
mon than we expected [7], [74], [120].

Authorized licensed use limited to: Universitaet Konstanz. Downloaded on September 20,2023 at 13:49:23 UTC from IEEE Xplore. Restrictions apply.



STREEB ET AL.: TASK-BASED VISUAL INTERACTIVE MODELING: DECISION TREES AND RULE-BASED CLASSIFIERS

3317
TABLE 1
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Concept Introduction 1 1 3] 835 1 5 3|1 1 1 2 1 2 2 1 36
Model Building 1 4 6 20 31 2 3|1 4 6 1 4 6 3 1 710 1 2 3 36
Evaluation 5 5 17 4 3 8 6 1 1 1 6 3 1 1 4 12 2 2 34
Understanding 2 5 8/ 28 2 4 1 1 3113 5 1 5 4 3 7 615 1 1 4| 46
Diagnosis 1 2 2 15 5 211 6 2 1 2 3 2 2 2 8 2 1 21
Refinement 1 1 5 1 1 111 2 2 1 2 3 1 1 1 1 8
Comparison 4 229 3 3 3/211 3 1 1 1 1 9 4 3 5 14 1 2 43
Ensemble Building 1 2 4 1 1 211 4 2 5 1 1 2 1 4 1 2 10
Provenance 2 1 1 1 1 1 3
Reporting 4 1 1 1 1 1 1 2 1 5 5
Presentation 2 1 11 3 3 112 9 3 1 1 1 4 5 2 5 11 1 55
Application 1 1 5 1 1 1 2 1 1 1 1 2 6
Assessment 1 2 3 8 1 4 1 3 1 2 1 2 10
Monitoring 1 1 1
Decision Modeling 10 1 1 1 1 1 11
Model Approximation 1 2 2 1 1 1 1 2 1 1 2 2 6
Total 0 5 10 14 110 2 6 2 9 10| 4 22 10 1 2 1 1 1 14 13 7 9 16 33 1 2 &6

Totals count unique publications in each row/column. The node-link diagram is the most prominent visual representation of the tree structure across all tasks.
Standard visualizations like bar charts, line charts and scatter plottes are most commonly used to augment the tree structure with additional information.

Interactive visualizations play an increasing role across
many tasks. In Model Building, they support the effective
involvement of domain experts, for instance, by defining
splits [58], [99], [120]. Furthermore, highlighting single deci-
sion paths can ease Understanding and Diagnosis [121], [122].
In Classifier Development, tasks are particularly closely inter-
woven. For example, direct interaction with visual analytics
systems can aid in diagnosing a decision tree and immedi-
ately applying a refinement. More generally, the very nature
of machine learning is an iterative process. Effectively going
back and forth between tasks calls for well integrated visual-
izations [7], [66].

The visual designs used for the different tasks is depicted
in Table 1. As is also visible from Fig. 6 on page 4, some
tasks are more common than others. As noted above, the
node-link diagram is by far the most prominently used
design for representing the structure of the decision tree. By
contrast, we did not observe any visualization that uses a
circle packed layout. While there is a diverse mixture of
designs for further components, the well-known bar charts,
line charts, and scatter plots are commonplace.

To our surprise, there is very little variation in quality
measures displayed with decision trees. Basically, we find a
small number of quality measures quantifying four differ-
ent aspects: i) Prediction quality, including Accuracy, AUC,
Balanced accuracy, Fl-score, and Lift, ii) Aspects of predic-
tion quality, like Precision, Recall/Sensitivity, and Specific-
ity, iii) Group (im)purity, Gini-index and iv) Tree structure,
including Size, Mean cues used, and Frugality. Overall, the
integration of visualizations and numeric quality measures
is limited. Basic Accuracy dominates all other quality meas-
ures, but most visualizations do not show any measures.

Table 2 cross-tabulates tasks and displayed quality meas-
ures, but except for the general lack of displaying quality
measures we do not identify any pattern.

Similarly, rule-based classification is rather a niche topic
in our sample [75], [103], [117], [119], [123]. One possible
explanation for this finding is that, as discussed above, sets
of classification rules can be transformed to decision trees.
Decision trees may provide more structure and thus be eas-
ier to visualize and comprehend in many cases [124], [125].
In Fig. 18, for example, the left-hand side explicitly shows a
branching tree structure, despite the fact that the RuleMatrix
system [75] is designed for a list of rules.

In Evaluation, many visual designs are agnostic to the
type of classification model. Employing versatile visualiza-
tions enables comparisons across model types, which are
relevant as the performance of decision trees often needs to
be judged in comparison to other candidate models such as
neural networks. As a result, few visualizations specialize on
the evaluation of decision trees, for example, by highlighting
split values. This observation resonates with the absence of
quality measures in most visualizations. More examples in
the direction of cross-type comparison come from Concept
Introduction, as, for instance, shown in Fig. 19. Such compar-
isons across model types are not unique to classification. For
instance, Rudin and Carlson [30] contrast regression trees
with other regression techniques.

8 OPEN QUESTIONS AND OPPORTUNITIES

As mentioned in the previous section, we are surprised by
how rarely quality measures are part of visualizations of
decision trees. But even among those visualizations that
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TABLE 2
Cross-Tabulation of Tasks and Quality Measures Displayed in the 152 Publications We Surveyed
Perspective Column Row Marginal /Mixture n.a.
Quality & g g w;;
Measure E ot & §
£ 5 s Qo 5 § 3
O T G OBIE T g 215 ¢ ¢ S g &
D g 2 B|F E € 2|8 S FHEHL|IE L E
Task < & =00 & A<k O3 % E =2 0|l
Concept Introduction | 1 1 1 1 1 1 1 2 4
Model Building 1 2 1 1 4 2| 4 1 1 3| 11
Evaluation 3 4 4 1 1 2 1 1 1 111 1 4| 18
Understanding 20mey 1 2 3 2 3 . 1 1 3 6| 24
Diagnosis 3 1 2 3|4 1 1 2 7
Refinement 2 1 2 213 1 4
Comparison 3 4 3 1 1 1@ 1 1 22 1 4| 18
Ensemble Building 1 1 1 1 1] 5 1 1 2 8
Provenance 1 1 1
Reporting 3 2 1 1] 1 1 1 3
Presentation 5 3 1 1 1 2 - 1 1 111 1 5 18
Application 1 1 1 1 1 1 1 2
Assessment 2 1 1 20 2 1 2 5
Monitoring 0
Decision Modeling 3 1 4
Model Approximation 2 2|1 4
Total 6 6 4 1|2 4 5 3|26 1 1 2 3|2 112

Totals count unique publications in each row/column. Clearly, Accuracy is the most prominently displayed measure of quality. However, compared to the size of
our sample quality measures are rarely displayed. There is no relationship apparent between tasks and the quality measures displayed. Quality measures are sorted

according to inherent perspectives [3].

show quality measures only a tiny fraction shows multiple
quality measures capturing different aspects of quality [7],
[28], [66]. One exception to this is the ROC plot, which
is a common and model-agnostic visualization showing
Recall/Sensitivity over Specificity. Still, the question remains,
how can quality measures be integrated in visualizations of decision
trees? Especially for visual analytics and interactive machine
learning, we expect that integrating quality measures offers
analysts additional views on the trees. Just like linked views
advanced data visualization a closer integration of quality
measures and visualizations will advance visual analytics
systems for interactive machine learning, and decision trees.
They likely also will increase the acceptance of visual
approaches within the machine learning community.
Likewise, we see a potential for utilizing algorithms
developed in similar domains, for instance, integrating gen-
eral tree comparison algorithms [127], [128] in visualizations
for decision tree comparison. These algorithms work with
hierarchically organized data in general and are likely to
facilitate the comparison between large decision trees as
well. Especially the Comparison of multiple trees and

Fig. 19. Decision boundaries of ten types of classifiers across three data-
sets. The sixth column (center) depicts a decision tree with typical sharp
boundaries in parallel to considered attributes. Source: https:/scikit-learn.
org/stable/auto_examples/classification/plot_classifier_comparison.html
(accessed Jan. 2020, cf. [126]).
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Ensemble Building are complex and difficult problems for
which no standard visualization techniques have emerged.
More generally, one may ask: How can visualization algorithms
and visual analytics systems provide better default layouts and
assistance? The tighter integration of mathematical and algo-
rithmic approaches and visualization will not only help peo-
ple, who are not visualization experts, to come up with
better visualizations, but also analysts to use visual analytics
systems more efficiently.

These potentials notwithstanding, there are also opportu-
nities for integrating humans more closely in Classifier
Development. Recent research shows that small decision
trees perform competitively in noisy environments [28], [38],
[39], [50], [108], [129]. Small trees, in particular, constitute a
special opportunity for visualization and visual analytics as
problems with visualizing large trees can be avoided and
integrating analysts’ domain knowledge becomes increas-
ingly important [8]. This raises the question: How can visual-
izations and visual analytics systems facilitate the externalization
of domain knowledge? The whole workflow will not only bene-
fit from the externalization of domain knowledge and
improved communication, but ultimately yield better deci-
sion trees and more accurate classifications. However, to
date empirical studies on interactive visual Classifier Devel-
opment are rare and usually do not involve domain
experts [6], [8], [54], [56], [130]. Still, interactively constructed
decision trees provide an alternative to deep learning classi-
fiers, especially in scenarios that demand for the positive
properties of decision trees summarized in Section 2.

Particularly to laypeople, who only get in touch with
decision trees in basic Concept Introduction or by attending
a presentation, the node-link diagram is omnipresent. But
also analysts working with standard software default to
simplistic node-link diagrams that only visualize the tree
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structure without additional information, such as distribu-
tions of values or split qualities. How can rich visualizations
and visual analytics systems for dealing with decision trees
become more accessible? Spill-over of design knowledge from
the visualization community will lead to more informative
and aesthetic visualizations. Meanwhile, which visual
designs are most accessible needs to be answered alongside
the technical questions. Although there are some studies
comparing visualizations of hierarchical data (e.g., [131],
[132]), a number of comparisons between automated algo-
rithms and interactive systems [6], [8], [43], [44], [52], [54],
[56], [99], [120], [130], [133], [134], [135], [136], [137], as well
as evaluations of individual interactive systems [66], [75],
[76], [77], 1871, [117], [123], [138], [139], [140], only few
empirical experiments target alternative visual designs of
decision trees [125], [141] (see also Fig. 4 on page 3). Hence
there is an obvious need for comparative evaluations
between different designs. Without such empirical investi-
gations, it is difficult to formulate and substantiate design
guidelines.

In resemblance to the prominence of the node-link dia-
gram, we do not find major differences between the visual-
izations aimed at different tasks. Clearly, visual analytics
systems covering large parts of the iterative Classifier
Development offer a diverse set of interaction capabilities
and more advanced visual displays [7], [66] than static visu-
alizations for Presentation. Still, often multiple tasks are
tackled from one general-purpose visualization, not a num-
ber of specialized views. Hence: How can visual analytics sys-
tems integrate visualizations tailored more closely to the steps in
Classifier Development? For example, Evaluation and Diagno-
sis demand for distinct levels of detail, which may be inte-
grated via semantic zooming. Visualizations for Provenance
and Reporting will aid in transitioning between tasks and
facilitate the supervision of Classifier Development efforts.
One particular challenge will be to coordinate the tailored
views in such a way that their potential benefits outweigh
the friction induced by switching between views.

Beyond the Classifier Development workflow, there
appears to be an exceptionally vast and empty space for cre-
ative utilization and future innovation. Both, Classifier Utili-
zation and Descriptive Modeling of Classification Processes,
attracted little attention, except for Presentation. It is much
more difficult to deploy and evaluate visualizations that are
aimed at actual utilization in the field. Those domains that
spend the effort to evaluate decision aids and tools at a rele-
vant scale, like medicine, tend to be conservative and,
understandably, not too open for being a testbed for late-
breaking visual designs and visual analytics systems. In the
area of Descriptive Modeling of Classification Processes we
can envision that the descriptive use of Decision Modeling
will benefit from visualizations and visual analytics systems
that spill over from Model Approximation, which started to
attract researchers only recently in the domain of Explain-
able Artificial Intelligence (XAI). Hence, we ask: How can
visualizations and visual analytics systems for utilization tasks be
developed and evaluated? Adopting visualizations and visual
analytics systems in real-world contexts will be one poten-
tial response to societal demands for an accountable and
transparent decision-making when delegated to (partially)
automated classification algorithms.
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Taken together, these open questions highlight that even
in a domain that has been researched for decades, there
remain quite fundamental gaps, which align astonishingly
well with more general visualization research. To begin
with, the transparent depiction of diverse quality measures
as well as the provision of good defaults and assistance are
challenging. Our review clearly highlights that there is a
lack of empirical research that prevents the proposition of
substantiated guidelines. At the same time, a study of obser-
vations made by practitioners in their daily work would
complement our work by going beyond our analysis of how
scientists from other domains present their results (see Sec-
tion 5.1). Offering workflows that are accessible to different
stakeholders goes well beyond the development of typical
research prototypes. Despite the prominent discussions on
the task-dependency of visualizations, dedicated tailoring
to task demands is not apparent in our sample. Especially
when it comes to the utilization of classifiers in practice,
there is little research. In consequence, practitioners are left
alone in choosing the right visual tool that supports their
requirements.

An obvious next step is to extend our survey to the more
general field of visualization to support classification based
on machine learning. While visual designs can be expected
to be different, we expect our set of tasks as well as our
focus on performance measures to closely match the work-
flows and demands across modeling approaches. Surveys
centered around visualization, like ours, will complement
surveys that are structured along high-level tasks and ques-
tions [9], [23], [36]. Regarding potential results, on the one
hand, we would expect to find lacks of comparative evalua-
tions of visual designs and visual analytics systems. On the
other hand, more complicated techniques may attract expert
audiences that are capable of working with richer visualiza-
tions, such that basic visualizations comparable to node-
link diagrams are less prominent. Beyond classification, for
instance, the use of visualization in regression modeling is
an active field of research and a promising candidate for a
similar survey.

9 CONCLUSION

In this survey, we compiled a broad overview on available
visualizations of decision trees and rule-based classifiers
from a task-based perspective. The long history of decision
trees and their close relationship to visualization renders
them a perfect class of prediction models for investigating
the differences between visualizations designed for distinct
tasks. We surveyed eight main sources of publications cov-
ering major visualization venues and extend our sample
based on references, recommendations and additional key-
word searches. In total, our sample consists of 152 publica-
tions dating back to 1986.

To our surprise, visualization designs are rather general
and homogeneous across tasks, instead of being highly spe-
cialized and tailored to particular tasks. By contrast, there is
a big difference between visualizations designed for differ-
ent audiences. In visualizations designed for audiences of
laypeople, the node-link diagram is omnipresent. Machine
learning model developers, on the other hand, often are con-
fronted with a number of complementary designs organized
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in linked views. But even in visualizations designed for
model developers, quality measures, except for Accuracy,
are rarely presented in a visual fashion, and alternative indi-
cators of model quality are mostly lacking.

In consequence, we see substantial opportunities for inte-
grating visualizations more closely with algorithms and
mathematical measures of model quality. At the same time,
increasing interaction capabilities will lead to an improved
accessibility and the utilization of domain experts” knowl-
edge in model construction. The lack of visualizations for
Classifier Utilization and Decision Modeling uncovers that
there still is a considerable gap between research and practi-
cal application in areas that are more distant to visualization
researchers daily business. Finally, the question remains,
why do alternative (tailored) visual designs not match the
ubiquitous use of node-link diagrams?
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