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Abstract How can we study bounded rationality? We answer this question by

proposing rational task analysis (RTA)—a systematic approach that prevents ex-

perimental researchers from drawing premature conclusions regarding the (ir-)ra-

tionality of agents. RTA is a methodology and perspective that is anchored in the

notion of bounded rationality and aids in the unbiased interpretation of results and

the design of more conclusive experimental paradigms. RTA focuses on concrete

tasks as the primary interface between agents and environments and requires ex-

plicating essential task elements, specifying rational norms, and bracketing the

range of possible performance, before contrasting various benchmarks with actual

performance. After describing RTA’s core components we illustrate its use in three

case studies that examine human memory updating, multitasking behavior, and

melioration. We discuss RTA’s characteristic elements and limitations by com-

paring it to related approaches. We conclude that RTA provides a useful tool to
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render the study of bounded rationality more transparent and less prone to theore-

tical confusion.

Keywords Bounded rationality � Benchmarking � Optimality � Task environment �
Rational analysis � Ecological rationality

Just as a scissors cannot cut paper without two blades, a theory of thinking and problem solving cannot

predict behavior unless it encompasses both an analysis of the structure of task environments and an

analysis of the limits of rational adaptation to task requirements.

(Newell and Simon 1972, p. 55)

Introduction

Assessments of rationality play a central role in the analysis of minds and machines.

However, the utility of such an endeavor requires not just a norm of rationality but a

method of measuring adherence to that norm. Herbert Simon’s pioneering insight

that human cognition is both bounded by and adapted to its environment redefined

the yardstick by which behavior ought to be measured. His notion of bounded

rationality (Simon 1955, 1956, 1990) conveys that agents perform tasks with

limited information, computational capacity, and time, and implies that rationality is

a joint function of an agent’s cognitive capacity and environmental resources.

Nevertheless, many inquiries into the nature of rationality lack a careful analysis of

the environment or of the interplay between internal and external constraints.

Regarding the rationality of the human species, a vast amount of research

portrays people as blundering simpletons more reminiscent of Homer Simpson than

of Homo sapiens. Fraught with ‘‘general misconceptions’’ (Ross and Nisbett

1991, p. 86) and suffering from ‘‘heuristic biases’’ (Ferguson 2008, p. 346) that

cause ‘‘severe and systematic errors’’ (Tversky and Kahneman 1974, p. 1124) we

must strive to curb our primitive ‘‘animal spirits’’ (Akerlof and Shiller 2010) and

hope for turning out ‘‘predictably irrational’’ (Ariely 2008). As a consequence,

scientists have accumulated large arsenals of chronic flaws and biases,1 concluded

that ‘‘mental illusions should be considered the rule rather than the exception’’

(Thaler 1994, p. 4), and equated the task of mapping bounded rationality with

‘‘exploring the systematic biases that separate the beliefs that people have and the

choices they make from the optimal beliefs and choices assumed in rational-agent

models’’ (Kahneman 2003, p. 1449). The verdict that people routinely violate

rational norms has led to a lively theoretical debate, in which researchers’

‘‘inordinate fondness for errors’’ (Krueger and Funder 2004, p. 317) has been

criticized as a rhetoric of irrationality (Lopes 1991) and a distorted view of

cognitive illusions (Gigerenzer 1991). Unfortunately, some key methodological

implications of the notion of bounded rationality have been lost in the trenches of

these ‘‘rationality wars’’ (Samuels et al. 2002).

1 Krueger and Funder (2004, Table 1, p. 317) provide a ‘‘partial list’’ of 42 errors of judgment, and

http://en.wikipedia.org/wiki/List_of_cognitive_biases (retrieved on Dec. 22, 2014) collects over

180 cognitive biases, many of which can be re-interpreted as smart adaptations (Gigerenzer 2004).
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Newell and Simon’s (1972, p. 55) scissors analogy called for ‘‘both an analysis

of the structure of task environments and an analysis of the limits of rational

adaptation to task requirements’’. Yet despite this early emphasis on the interactive

and environmentally embedded nature of bounded rationality, most empirical

investigations of rational behavior (Burns 2002; Herrnstein and Vaughan 1980;

Shakeri and Funk 2007) follow the traditional logic of experimental research design.

To assess the adaptiveness of cognition, researchers manipulate the properties of

task environments and evaluate the extent to which organisms cope with the

manipulated contingencies. Any substantial deviation of behavior from the

experimenter’s conception of optimal task performance is then diagnosed as an

anomaly or irrationality. A common finding among studies adopting this approach is

that organisms exhibit insufficient adaptations to particular task environments and

remain stuck in a behavioral pattern of stable suboptimal performance (Fu and Gray

2004; Herrnstein 1991). If trivial explanations (like insufficient instruction or

motivation) can be excluded, stable suboptimal behavior is believed to reveal the

limits of boundedly rational organisms.

Although laboratory-based attempts at mapping the bounds of rationality are an

invaluable source of empirical data, we think that the conclusions drawn from these

data are often premature. More specifically, sightings of the bounds of rationality

are frequently based on a biased perspective on experimental task environments.

This bias conflates the experimenter’s understanding of the task—and hence optimal

task performance—with the experimental subject’s limited knowledge of the

environment. The result of this experimenter bias is an increase in Type-1 errors in

the investigation of bounded rationality, i.e., the premature acceptance of the claim

that behavior deviates from some rational norm. Our intent in documenting the

experimenter bias is constructive rather than destructive. In Homer’s The Odyssey,

the hero Odysseus is able to avoid the call of the Sirens by recognizing his weakness

and binding himself to the mast of his ship. Similarly, by documenting the dangers

of experimental bias in the assessment of rationality, we hope to steer investigators

away from rocky shoals in the interpretation of experimental results.

Our contribution to this end is the methodological approach of rational task

analysis (RTA). Rather than suggesting a general conclusion about the rationality of

behavior or integrating competing theories of human cognition, RTA provides a tool

to aid experimental design and the unbiased interpretation of research results. By

translating Newell and Simon’s (1972) scissors analogy into a set of methodological

principles, RTA offers a safeguard against misadventures in the mapping of

bounded rationality. Hence, RTA is not a new theory, but rather a methodology—a

proposal of best practices for the interpretation of results and experimental research

design regarding the study of bounded rationality.

In this article, we first present an overview of the core components of RTA. By

explicating key aspects of the task and bracketing the range of plausible human

performance, RTA provides a methodology to benchmark bounded rationality and

measure the impact of environmental interventions on behavior. To be applicable to

a wide array of research questions and domains, RTA is expressed as a checklist of

caveats that should be considered before drawing conclusions about an organism’s

rationality. We then present three studies that catalyzed our development of RTA
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and illustrate its applicability across different tasks and task environments. In each

case, an initial claim of irrational behavior turns out to be the result of an

experimenter’s biased or incomplete understanding of the task environment. RTA

revises the premature diagnosis and provides novel insights in the performance of

rational agents or the properties of the task environment. We conclude by

comparing our proposal to related approaches and suggest that RTA—as a flexible

methodology that can accommodate different theoretical perspectives—is an

essential tool to explore and enlighten the nature of bounded rationality.

The Core Components of RTA

Rational task analysis (RTA) is a methodology and perspective that is anchored in

the notion of bounded rationality and ‘‘encompasses both an analysis of the structure

of task environments and an analysis of the limits of rational adaptation to task

requirements’’ (Newell and Simon 1972, p. 55). By translating the metaphor of

Simon’s scissors into a set of methodological principles, RTA is a tool for

conducting and interpreting rationality research and provides an answer to the

question: How can we study bounded rationality? RTA’s main purpose is to prevent

premature conclusions regarding the rationality or irrationality of agents performing

specific tasks. As a methodology, RTA can be applied to examine existing

experiments and corresponding results, as well as to modify existing or design new

research paradigms. To map the bounds of rational behavior, any instance of RTA

focuses on a concrete task as the primary interface between rational agents and the

environment.

Box 1 summarizes the core components of our approach. The process begins

whenever a research question arises regarding the rationality of an agent performing

Box 1 Overview of the core components involved in conducting a rational task analysis (RTA)

1. State the research question and rational behavior to be addressed

2. Define the task, and key features of the agent and task environment:

(a) What is the goal of the task?

(b) What is the agent’s motivation to perform the task?

(c) Which resources or constraints enable or limit performance?

(d) Which criterion is used to evaluate task performance?

3. Bracket the range of possible performances by mathematical modeling or agent-based simulations.

Relevant benchmarks to be determined are:

(a) One or more lower bounds of baseline performance

(b) One or more upper bounds of optimal performance

(c) Optional benchmarks to measure the performance of specific strategies

4. Collect data and contrast actual performance with the benchmarks

5. Consider interventions to the task environment and repeat Items 2–4

6. Conclude or iterate
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some specific task (Item 1). In practice, however, research projects rarely start from

scratch, but instead begin with some notable finding or previous conclusion. As

most complex tasks pose many challenges to cognitive agents and can be studied

from several perspectives, explicitly stating the specific question and behavior

addressed helps preventing misattributions and overly specific or general

conclusions.

A key stance of our approach is that the task (Item 2) is the most useful unit of

aggregation to study bounded rationality and defines the interface between agent

and environment, i.e., the edge along which Simon’s scissors aim to cut. Rather than

rushing to collect new empirical data, RTA first explicates the details of the studied

task by adopting a functional notion of the task environment (Gray et al. 2006)

which is jointly determined by features of the task (e.g., its goal and constraints), the

agent (e.g., its goal, motivation, internal capacities, and constraints), and the

environment (e.g., the performance criterion and availability of resources). In

addition to focusing on a task’s definition and objective, a functional perspective

assumes that internal and external constraints define and shape the task in an

adaptive and interactive fashion. For instance, the task of chopping down a tree is

functionally quite different from chopping wood for the fireplace and depends

crucially on features of the axe (e.g., its weight distribution, a sharp or dull blade)

and of the agent (an axeman’s physique and experience).2

The notion of benchmarking (Item 3) is a central and fundamental component of

RTA. The use of baseline and optimal benchmarks to map the range of possible

performances is a generalization of the bracketing heuristic (Gray and Boehm-

Davis 2000; Kieras and Meyer 2000), which originated in the context of

computational cognitive modeling and used a slowest- and fastest-reasonable

model to estimate expected processing times and guide the design of realistic

models. Instead of focusing on latencies, RTA requires lower and upper benchmarks

to delimit the range of possible performances.

RTA allows for different kinds of benchmarks, provided that they are explicated

and justified. Typical lower bounds for task performance consist in distributing

actions randomly or uniformly over all options available in an environment.

Specifying an upper bound for performance requires explicating a norm of

optimality. The concept of multiple optima is no oxymoron when considering that

agents can be endowed with different types of background knowledge. We

distinguish between three different kinds of knowledge and corresponding norms of

optimality: With certain knowledge, all relevant aspects of the task environment are

known to the agent. By contrast, an agent behaves under risk when future outcomes

are probabilistic, but the relevant probabilities are known or can be estimated

(Knight 1921). Lastly, agents act under uncertainty whenever the possible

consequences of choices are unknown or it is difficult or impossible to assign

probabilities to an exhaustive list of outcomes. As different assumptions about an

agent’s knowledge yield different types of optimality, RTA’s flexibility regarding

the selection of a rational norm is no flaw, but an essential feature. For instance, the

plurality of optima under different types of knowledge allows for different

2 See Scriven (1991, p. 346) for an elaboration of this example.
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perspectives on a task by experimenters (who analyze and design tasks under

certainty or risk) versus participants (who mostly act under risk or under

uncertainty). If lower and upper bounds are well-defined, the realistic range of

actual performance falls within the range of possible performance. Including

additional benchmarks for specific strategies (e.g., simple heuristics or algorithms

with theoretically-motivated constraints) allows gauging the range of reasonable

performance.

The fact that empirical data collection (Item 4) occurs relatively late in RTA does

not diminish its importance. Instead, all preceding elements prepared the ground to

properly evaluate agents’ actual performance. When contrasting observed behavior

with benchmarks, we must bear in mind that deviations from lower and upper

bounds are to be expected, particularly when aggregating measures over tasks or

individuals. Whereas observing agents perform a task at baseline level may indicate

some lack of incentive or task-relevant information, meeting a norm of optimality is

not a reasonable demand on rational behavior. In fact, reserving the credit of

rationality for demonstrable optimality and merely measuring deviations from this

standard would enshrine rationality as a null hypothesis that can only be falsified

(Krueger and Funder 2004, p. 318). In addition to reiterating our need for multiple

benchmarks (Item 3), the untenable status of an isolated norm of rationality has two

important consequences: First, any positive verdict for an agent’s rationality

requires specifying an alternative hypothesis (Nickerson 2000) or a meaningful

difference from optimality (similar to a statistical effect size). Second, suboptimal

behavior can be considered rational if it falls within some tolerated range of

optimality or if agents have good reasons for falling short of an optimal benchmark

(e.g., when the behavioral costs of actions outweigh their benefits, or when limited

capacities or resources constrain performance).

Introducing interventions to the task environment or changing the task by

considering potential moderators (Item 5) is an optional component of RTA. It is

not uncommon that comparisons between benchmarks and actual behavior yield

new hypotheses that suggest how performance could be boosted by changing some

aspect of the agent, task, or task environment (e.g., by altering instructions,

providing additional incentives, or highlighting task-relevant information). Typical-

ly, any substantial modification of the task requires an iterative cycle through

Items 2–4 until a conclusion can be reached.

Just as our approach does not prescribe the specifics of benchmarks or potential

interventions, RTA offers no predetermined result (e.g., guarantee that some

particular behavior will be found to be rational or irrational) and has no predefined

completion criterion (Item 6). As with any other methodology, the interpretation of

research findings remain the responsibility of the researcher. Thus, RTA structures

the shape of an argument and ends when an investigator following its principles is

confident to have accumulated enough evidence to reach a conclusion regarding the

rationality of an agent performing a specific task.

Overall, the set of core components summarized in Box 1 must not be viewed as

a fixed sequence of steps or an invariable recipe. Instead, they provide a collection

of best practices or checklist of caveats, which should be examined prior to judging

an agent’s rationality. As a methodology, RTA is best thought of as a swiss-army
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knife that provides a flexible set of tools, any one of which may turn out useful or

essential, but not all are always necessary to get a particular job done. To prevent

arbitrariness, RTA is anchored in the notion of bounded rationality and rests on the

core principles of examining concrete tasks, explicating assumptions and norms,

and contrasting actual performance with a range of precisely specified benchmarks.

In the following, the flexible yet systematic use of RTA will be illustrated by three

case studies, which catalyzed the development of our approach and demonstrate its

applicability across different tasks and psychological domains.

Three Case Studies

TRACS: A Baseline Bias in Dynamic Decision Environments?

TRACSTM is a ‘Tool for Research on Adaptive Cognitive Strategies’ in the form of

an experimental card game that was designed to investigate dynamic decision

making under risk (Burns 2001). Playing the game consists in making a series of

choices in which a player turns over one of two hidden cards to match the color of a

third. To maximize the number of matches over a total of 11 turns, a player should

track the changing odds of cards as the deck is being depleted. For example, at the

beginning of each game, the number of red and blue cards in the deck is equal. As

Blue

Circle

Triangle

Square

Red

4 4

6 2

2 6

Card face color

C
ar

d 
sh

ap
e

Back of card Face of card(a) (b)

(c)

(Blue)

Option A Option B

(Blue)

Fig. 1 The game of TRACS. a Each card in the deck has a black colored back, showing a shape (square,
circle, or triangle), and a front showing both shape and color (red or blue). b Frequency of each card type
in the deck (containing 24 cards). c On each of 11 turns, three cards are dealt. The center card is dealt
face up, showing its color. A player must choose to turn over either the left or the right card. The goal is to
choose the card that is more likely to match the color of the center card. In this example, Option B is more
likely to match the color of the center card, since circle cards are more likely to be blue than triangle
cards. After every choice the chosen card is turned over, revealing its color, and both face-up cards are
removed from the deck. As the game progresses, the frequencies of card types change
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cards are removed from the deck the odds of uncovering a red versus blue card

change. Based on an experiment and agent-based simulations, Burns (2002)

reported a baseline bias: Rather than updating their memory with each turn

according to the principles of Bayesian rationality, players seemed to base their

choices on the initial distribution of cards in the deck. Figure 1 illustrates the

mechanics of the game.

Although a limited capacity for dynamic memory updates is in line with previous

research (Venturino 1997), an insufficient sensitivity to recent changes seems a

serious threat to an organism’s survival in dynamic environments. For example, in

natural habitats, foraging animals should update their memory as food resources

become depleted in one area and more prevalent in another. By contrast, the results

obtained in TRACS suggest that human memory remains ‘stuck in the past’. This

anomaly of a baseline bias not only presents a challenge for any adaptive account of

memory (Anderson and Schooler 1991) but also contradicts previous claims that

people suffer from the opposite fallacy of base rate neglect (Tversky and Kahneman

1974).

Our analysis of TRACS (Neth et al. 2004) began with the question: How useful

are memory updates in this task environment? If a failure to update memory had no

significant impact on performance, a baseline bias might be irrational—in the sense

of deviating from the normative ideal of Bayesian belief updating—while being

simultaneously harmless. If the cognitive costs of memory updates exceeded their

benefits, the observed insensitivity to changing frequencies could be a case of

boundedly rational behavior. To examine this issue, we conducted a series of

simulations that benchmarked the range of possible performance by four cognitive

agents. A random agent provides a lower bound on performance by simply guessing

on each choice. A slightly more sophisticated baseline agent chooses cards based on

their initial distribution in the deck, but does not update its beliefs during the game.

To explore the upper limits of performance, an ideal memory-updating agent

accurately tracks all changing odds and chooses cards accordingly. Finally, an

omniscient agent acts as if it was endowed with X-ray vision. Although this faculty

dispenses with the need for memory altogether, it may still not yield a match on

every turn, as some turns have no winning card. Note that the latter agents define

two distinct optima: Whereas the memory-updating agent achieves the best possible

performance of human players under risk, the omniscient agent marks a purely

theoretic ceiling of the game by choosing cards under certainty.

A typical beginning player of TRACS succeeds in matching colors on 5–7 out of

11 turns and shows little improvement thereafter. To our surprise, our agents exhibit

a similarly narrow range of performance, scoring 5.2 points for the random agent

and 8.2 points for the omniscient agent (on average across 10,000 simulated

games). Crucially, the mean performance of the ideal memory-updating agent

barely exceeds that of the static baseline agent (6.8 vs. 6.6 points, respectively).

Moreover, any noticeable benefit of the ideal memory-updater over a static baseline

agent only occurs on the last five of 11 turns and presupposes perfect memory for

the first half of the game.

We concluded that the original game provides insufficient incentives for adopting

an effortful memory update strategy. This verdict allows for the possibility that
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players could remember more if the game provided additional motivation to do so.

To examine this, we constructed a variant of the game. Our modified version

TRACS* (Neth et al. 2004) looks identical to and obeys the same rules as the

original game, but stacks the deck so that a dynamic updating strategy outperforms a

baseline strategy by a larger margin. As predicted, the behavior of humans playing

the modified game provided a more optimistic view of their capacity for memory

updates. Although players did not achieve the level of performance of an ideal

memory-update agent, they outperformed the baseline agent when memory

mattered for performance. In addition to the behavioral evidence of task

performance beyond the baseline level, human players explicitly reported odds

that corresponded more closely to the actual odds than to the baseline odds.

Although our study made its point, it also had clear limitations. Our findings

provided an existence proof for a basic capacity for dynamic memory updates, but

did not investigate the details of our players’ motivations or potential. If human

memory updates reflect a cost-benefit tradeoff, and hence a boundedly rational

strategy, it will be important to measure and quantify the costs on memory imposed

by the task in future work. Thus, while our study exemplified the methodology of

RTA, elucidating the underlying mechanisms would require a study of additional

boundary conditions.

Fig. 2 Illustration of a Tardast scenario with six concurrent tasks. Each vertical bar represents a task, and
the height of the black portion indicates its current satisfaction level SL. Pressing one of the buttons
underneath a bar increases the SL of the corresponding task until it reaches its maximum of 100 %. The
button values (5, 2, 6, etc.) specify each task’s weight W. On every system cycle, the Ws and all
current SLs are integrated linearly to update a numerical feedback score (top left). The horizontal
progress bar indicates the remaining scenario time
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Tardast: Suboptimal Resource Allocation in Juggling Multiple Tasks?

Tardast is named after the Persian term for ‘juggler’ and provides an abstract and

interactive framework to study human multitasking (Shakeri 2003; Shakeri and

Funk 2007). The analogy to a juggler’s feat of simultaneously spinning plates on

vertical poles captures the resource allocation problem that lies at the core of any

multitasking situation: Due to inherent limits of perceptual, cognitive, and action

resources, organisms need to negotiate tradeoffs when facing several tasks at once.

While working on any particular task, an operator or juggler needs to monitor the

state of alternatives and the overall system to decide when to switch to another task.

Although performance in Tardast is measured by a linear function of all task states

over time, Shakeri (2003) proves that finding an optimal time-to-task allocation

constitutes an NP-hard problem. Figure 2 illustrates an experiment designed to

study cognitive resource allocation, in which a human operator must manage six

concurrent tasks.

In experimental and simulation studies, Shakeri and Funk (2007) contrasted

human performance with the near-optimal performance of a machine-learning

algorithm and found human operators to be lacking in comparison. Human

shortcomings were attributed to suboptimal time-to-task allocations and poor

strategic task management. As the complexity of the system seemed to exceed

human resource limitations, operators were judged to fail at adequately balancing

and prioritizing tasks.

Our first study using the Tardast paradigm replicated and extended the original

phenomenon of operators’ stable suboptimal performance (Neth et al. 2006). By

controlling for learning effects and comparing human performance not just to

optimality, but also to artificial agents that provided benchmarks for baseline and

simple heuristic performances, our study yielded two insights: First, different

Tardast scenarios are clearly not of equal difficulty. Specifically, whenever some

scenarios generally afford higher scores than others, absolute scores cannot be

compared across scenarios. As the upper and lower benchmarks across scenarios

varied in parallel to human performance scores, our bracketing strategy revealed

that performance differences between scenarios were largely explained by

environmental differences.3

A second result painted human performance in an even more sobering light than

the findings by Shakeri and Funk (2007). For many scenarios, human operators

barely performed above baseline and were demonstrably suboptimal, not only

relative to a normative ideal, but also when compared to a simple heuristic strategy

that operators could easily have implemented. Taken together, these results left us

with a puzzle: Why were human operators so utterly dependent on environmental

characteristics and fail to discover or implement simple strategies to boost their

performance?

3 Behavioral patterns that closely mirror the shape of task environments are reminiscent of Simon’s ant-

on-the-beach analogy: ‘‘The apparent complexity of our behavior over time is largely a reflection of the

complexity of the environment in which we find ourselves’’ (Simon 1996, p. 53).
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A second study was motivated by an intervention to the task environment and

identified lack of control on the part of Tardast operators as a piece of the puzzle

(Neth et al. 2008). Cognitive processes can be constrained by limited processing

resources or by data limits (Norman and Bobrow 1975). When searching for

potential data limits in Tardast, we realized that the original system provided

outcome feedback, as the displayed score reflected an operator’s overall achieve-

ment over the entire scenario. We contrasted this increasingly inert numeric

feedback score with the notion of control feedback, which provides moment-to-

moment guidance for action selection. Hypothesizing that perfect outcome feedback

may still provide suboptimal control feedback, we replaced the original score with

an alternative one that dynamically reflects current system quality (i.e.,

metaphorically, showing a ship’s current speed, rather than its overall distance

traveled so far). An experiment and further simulations showed that human

operators allocated their attention and actions more adaptively when equipped with

the new control feedback mechanism. Although the original outcome feedback

provided the very measure by which performance was evaluated, control

feedback—by virtue of being more responsive to local system changes—facilitated

superior performance outcomes. This demonstrated that the poor performance of

Tardast operators was not just caused by human capacity limits but also by data

limits of the original feedback score. Again, our analysis and study of a slightly

modified task environment succeeded in boosting human performance beyond the

levels previously observed. But although operator performance with control

feedback reached the level of simple heuristics, it still remained suboptimal.

The Harvard Game: Myopia and Melioration in Choice Under
Uncertainty?

Psychology and behavioral economics are rife with empirical demonstrations of

human choice violating the norms of rational choice theory. The research program

on heuristics and biases (Kahneman et al. 1982; Tversky and Kahneman 1974) has

cataloged a wide array of such examples: People inappropriately frame decision

problems, evaluate consequences with respect to an inappropriate reference point, or

fail to apply the rules of probability theory in reasoning about risks. In all these

cases, the consequence of irrational choice leaves the experimental participant

worse off. Thus, while people might state a preference for more money, their actual

choices seem to leave them with less.

Richard Herrnstein and colleagues suggested that another factor may be at work

in suboptimal choice. As an alternative source of suboptimality they investigated a

phenomenon called melioration (Herrnstein and Vaughan 1980), which refers to the

process of choosing an alternative that has the highest immediate utility. On the

surface, melioration does not seem such a bad choice strategy. However,

meliorating behavior ignores the fact that immediate actions can often have

negative consequences for future utility. For example, the decision to eat an

unhealthy meal today may have small, but negative consequences for future health

and happiness. Thus, choosing to maximize local gains might entail serious long-

term pains.
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Much of the research behind melioration theory was built upon studies of animal

choice (Herrnstein 1982; Herrnstein and Vaughan 1980; Vaughan 1981). In these

experiments, animal subjects (typically pigeons) faced instrumental choice tasks

between two alternative sources of food. Summarizing the results of a typical

experiment, Herrnstein writes ‘‘In the experiment as a whole, the pigeons earned

food at a lower rate than they would have by allocating choices randomly to the two

alternatives, let alone what they could have earned as food reinforcement

maximizers’’ (Herrnstein 1990, p. 362). So much for pigeon rationality.

But are humans just as bird-brained? In numerous studies, human participants

have also been shown to meliorate by systematically favoring locally rewarding

options over global utility maximization, even when melioration is the worst

possible decision strategy for the task (Rachlin and Laibson 1997). This persistent

tendency to meliorate has widely been viewed as an explanatory factor for

phenomena as diverse as natural selection (Dawkins 1999), stable suboptimal

performance in touch-typing (Yechiam et al. 2003), addiction (Herrnstein and

Prelec 1992; Heyman and Dunn 2002), delinquency (Wilson and Herrnstein 1985),

as well as impulsivity and lack of self-control (Herrnstein 1981). Consequently,

Herrnstein (1990, p. 218) concluded that ‘‘behavior is generically suboptimal,

though still orderly, and that optimality is the exception rather than the rule’’.

Figure 3 illustrates the central aspects of a task environment—known as the

Harvard game—that has previously been shown to induce meliorating behavior in

humans (Rachlin and Laibson 1997). In this experimental paradigm, participants are

informed that they must make a number of n choices (e.g., n = 800) between two

alternatives (labeled as Options A and B) and instructed to maximize their overall

gains. After each choice, they may or may not receive a monetary reward, and then

face the same choice again on the next trial. Crucially, the probability of obtaining a

reward on each trial and for each of the alternatives must be learned from

experience and depends on participants’ past history of choices. In Fig. 3, the

probability of reward is plotted for each of the two alternatives as a function of the

participant’s preference for Option A on the previous ten choices. Option B always

has a higher probability of yielding a reward, but the more often it is chosen, the

worse both options become (i.e., reward probabilities for both options are a

decreasing function of preference for Option B). In this environment, the strategy

that maximizes total winnings is to always choose the option with locally worse

prospects (Option A). Humans, like pigeons, tend to meliorate in this task and

demonstrate a stable bias towards Option B.

Based on our successful interventions in TRACS and Tardast we first conducted

two experiments that explored the potential of more global feedback mechanisms in

helping people to maximize rewards (Neth et al. 2005, 2006). When these attempts

failed, we subjected the Harvard game to an RTA (Sims et al. 2013). This involved

a crucial change in perspective: Previous experiments using this paradigm had

neglected to appreciate that the experimenter’s knowledge of the task is very

different from the participant’s view on it. From the perspective of the

experimenter, meliorating behavior in the Harvard game exemplifies irrational

choice under risk. However, for an experimental participant, the relationship

between actions and consequences is uncertain and must be learned from
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experience. Thus, the key question in the Harvard game is: What should a rational

participant be expected to know or learn about this environment, given a finite

amount of experience with the task? To answer this question, we designed an

optimal Bayesian agent and set it loose on the Harvard game.4 To our own surprise,

even an unboundedly rational agent would be expected to meliorate, and persist in

this supposedly irrational strategy for thousands of trials. Figure 4 plots the

predicted reward rate for exclusive preference to each of the two alternatives

according to the Bayesian learning agent, as a function of the amount of its

experience with the task. The Bayesian learning agent demonstrates that a

preference for melioration should rationally persist for nearly twenty thousand trials.

Not only did our RTA unmask the rationality of melioration, but it also was able to

explain relatively subtle aspects of human performance in the experiment. For

example, each participant in the experiment experienced a slightly different task, as

a consequence of making different choices and observing different outcomes. The

Bayesian learning model was able to predict how this individuated experience

should influence future choices. Importantly, participants who observed greater

evidence indicative of the globally optimal strategy in fact showed a smaller bias

towards melioration.

In summary, our RTA of the Harvard game (Sims et al. 2013) questions its

suitability to support far-reaching conclusions about the fundamental irrationality of

human choice in tasks with indirect and delayed consequences. By developing a

Bayesian model of the learning problem faced by individuals in uncertain decision

environments, we demonstrated that an unbiased learner would adopt melioration as

the optimal response strategy for maximizing long-term gain. Focusing on the

nature of the task as perceived by the participant, rather than as assumed by the

experimenter, suggests that many documented cases of melioration should not be

interpreted as irrational choice, but can be understood as globally optimal choice

under uncertainty.

4 This Bayesian agent formalized the learning task as one of inferring a posterior distribution over the

relevant history window of environmental states, a function that maps each choice history onto one of a

discrete number of states, and the probability of obtaining a reward for choosing either option in each

possible state of the environment (see Sims et al. 2013, p. 143 ff., for details).
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Fig. 3 Reward contingencies of
the Harvard game, a decision
environment designed to
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maximization (by consistently
choosing Option A) and
melioration (by preferring the
locally superior Option B)
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Discussion

After introducing and illustrating the methodology of RTA, we now compare our

case studies to discuss their similarities and differences and highlight some essential

and accidental elements of our approach. Briefly mentioning some related

approaches will uncover many common themes, but also reveal important

limitations of RTA.

Similarities and Differences Between our Case Studies

Our three case studies exemplified the elements characterizing our general approach

(cf. Box 1 on p. 4): First, we took someone else’s research question and diagnosis of

irrational behavior—in the form of a baseline bias, suboptimal multitasking

performance, or a persistent bias towards melioration—as the beginning of a

research program, rather than its end. Second, our RTA began with a careful

examination of a concrete task and environment that seemed to have elicited some

behavioral anomaly. To capture the functional aspects of the task, we specified key

features of cognitive agents and their task environments (e.g., the current goal,

performance criterion, as well as task-relevant resources and constraints). Third, we

created computational or formal models of minimal and optimal task performance

to bracket the range of possible performance. The purpose of these simulations was

not the design of cognitive models with a maximum of naturalistic constraints, but

the provision of benchmarks for actual performance. Fourth, we collected and

compared empirical performance data with our simulated benchmarks. Fifth, we

considered changes to some task environments (TRACS and Tardast) and

hypothesized that they would facilitate performance. Implementing and assessing

the effects of these interventions required additional simulations and data

collections. Sixth, and finally, we concluded that the task environments were ill-

suited to answer the original research questions and that claims regarding agents’

alleged irrationality had to be revoked or qualified.

Fig. 4 Predicted reward rates of the rational learner model (for the maximizing Option A and meliorating
Option B) in the Harvard game
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Despite these similarities, our studies also differed in important aspects. Their

first and most striking difference is that they addressed dissimilar phenomena and

psychological domains, which serves as an indication of RTA’s broad generality.

Second, although all examples crucially relied on simulated performance bench-

marks, their details, goals, and consequences varied between studies. In TRACS, a

narrow gap between a lower and two upper benchmarks (for optimal performance

under certainty vs. risk) revealed that human performance was not as biased as

originally believed. In Tardast, we never expected people to perform optimally, but

were concerned about their failure to match the performance of a simple heuristic.

In both task environments, the range of possible performance would remain

unknown without suitable benchmarks. By contrast, determining the lower and

upper bounds on performance in the Harvard game seemed trivial, as they follow

directly from its definition (see Fig. 3). In this context, our demonstration of a

difference between optimal performance under risk versus uncertainty made a

theoretical contribution that questioned the traditional interpretation of results based

on this paradigm. Third, our analysis of TRACS and Tardast both suggested

interventions that improved performance, but led to different interpretations. As our

modifications of TRACS were invisible to agents, they demonstrated an ability to

outperform a pure baseline strategy that could not be detected in the original game.

In Tardast, our implementation of a more responsive feedback score showed that the

poor performance in the original paradigm was partly due to a lack of control

feedback. Fourth, and finally, our case studies reached different conclusions.

Although all three original claims of irrationality were premature, agents still

exhibited limitations in our revised versions of TRACS and Tardast. By contrast,

our Bayesian model of the Harvard game showed that agents were consistent with

the behavior of an ideal rational learner.

Accidental Versus Essential Features of RTA

Taken together, these comparisons allow us to distinguish between the accidental

and essential features of our approach. For instance, it was merely accidental that all

three of our reported case studies responded to someone else’s work and resulted in

the revision or qualification of an earlier claims regarding agents’ alleged

irrationality. Rather than merely being reactive by suggesting post hoc critiques

of existing results and experiments, all core components of RTA can be used to

explore uncharted research territory and construct and evaluate new paradigms.

Similarly, RTA has no pre-determined result or implicit agenda to demonstrate the

universal rationality of human cognition. Thus, the similar conclusions of our

studies were not caused by any aspect of RTA, but due to chance or our selection of

examples. By merely subscribing to the basic tenets of bounded rationality, RTA

remains epistemically neutral regarding the rationality of any particular behavior

under investigation. In fact, providing no guarantees for showing an agent’s

rationality is a precondition for rendering any such verdict informative and

convincing.

The most obvious essential feature of RTA is its commitment to the notion of

bounded rationality and the systematic use of methodological core components. By
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examining concrete tasks, explicating norms and benchmarks that delimit the range

of possible performance before contrasting them with actual performance, RTA

makes behavior more measurable and prevents premature conclusions regarding the

rationality of agents.

Defining RTA as a methodology and perspective highlights two essential aspects:

First, a methodology is no ideology. Beyond conceptualizing rationality as a joint

function of agents and task environments RTA does not subscribe to a particular

norm or theory of rationality. This openness is intentional, as it allows researchers

from different backgrounds to adopt our approach. The frameworks of Bayesian

rationality (Oaksford and Chater 2007), ecological rationality (Gigerenzer et al.

1999; Todd et al. 2012), computational rationality (Lewis et al. 2014), and social

rationality (Hertwig et al. 2013), each offer ready-to-hand definitions of optimal

performance in a given task. By contrast, RTA’s non-committal stance allows for a

kind of meta-experimentation, by examining the changes in conclusions obtained

when plugging-in different yardsticks for measuring rationality.

Second, adopting RTA entails a profound change in perspective. Traditional

research on rationality views and evaluates an agent’s behavior from the perspective

of an omnipotent experimenter, who is not only the judge to issue verdicts of

irrationality, but also defines the standard and designs the test by which an agent’s

rationality is being measured. If a systematic and substantial deviation from a

rational norm is found, three possible ways to defend the agent’s rationality are

(a) choosing a different norm, (b) criticizing the way in which a norm is being

measured, and (c) designing a different test. All of these routes have been explored

in the past (for examples, see Birnbaum’s 1983 and Koehler’s 1996, critiques of

base-rate neglect; the debate between Kahneman and Tversky 1996 and Gigerenzer

1996 on heuristics; or the re-analysis of the hot-hand fallacy by Burns 2004). RTA

does not favor one of these alternatives, but makes a contribution by turning the task

environment into an object of study and showing it from the perspective of a

rational agent. As experimental environments are a matter of design, different

designs can yield different results. Crucially, experimenters are often blind to or

myopic about the appearance of their designs from the agent’s viewpoint. For

instance, our analysis in Sims et al. (2013) was based on the premise that agents in

probabilistic environments behave and learn on the basis of limited experience, i.e.,

inhabit an uncertain world, rather than the risky one designed by its creator. By

simulating optimal performance from the agent’s perspective, RTA helps

experimenters to overcome their blind spot and to determine a task’s suitability

for measuring an explicated norm of rationality.5

Another essential feature of our approach is its flexibility. We mentioned in

Sect. 2 that RTA does not prescribe a fixed sequence of steps, is open to multiple

norms, and can be understood as a flexible set of tools or collection of best practices.

Our comparisons between our case studies have shown that their courses and

5 Similar shifts of perspective are reported in the literature on decision by sampling (Fiedler and Juslin

2006; Stewart et al. 2006). The consequences of presenting risk-related information in different

representational formats are explored in studies on the description-experience gap (Hertwig et al. 2004;

Hertwig and Erev 2009). Both paradigms provide strong additional arguments for the adoption of a

subject-based perspective when conducting research and interpreting experimental results.
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conclusions were neither planned nor obvious when we began our investigations,

but evolved during our analysis. Although RTA’s potential to ask and flexibly

respond to new questions is a valuable asset, it must not become arbitrary.

Fortunately, RTA’s flexibility is constrained by two protective factors—its

commitment to the presence of several core components (see Sect. 2) and its

constant emphasis on explication and justification. If two researchers or theoretic

perspectives reached different conclusions regarding the interpretation of some

finding, RTA would at least expose the source of—and hopefully help to resolve—

their conflict.

Related Approaches and Limitations of RTA

Beyond RTA, the notion of bounded rationality (Simon 1955, 1956, 1990) has

inspired a wealth of paradigms and theoretical approaches. Today, the frameworks

of rational analysis (Anderson 1990), computational rationality (Lewis et al. 2014),

heuristics and biases (Kahneman et al. 1982; Tversky and Kahneman 1974),

ecological rationality (Gigerenzer et al. 1999; Todd et al. 2012), and social

rationality (Hertwig et al. 2013) lay claims to Simon’s heritage and enrich and

elaborate his original ideas. Rather than being planned strategically, our approach

evolved by addressing practical issues raised by our case studies and investigations

of immediate interactive behavior (Neth et al. 2007). RTA developed to fill a

methodological niche in the space defined by Simon’s work, but has hardly been

conceived in a theoretical vacuum. Comparing it to related and recent approaches

that share a similar vision reveals some family resemblances, but also important

limitations of RTA.

Rational Analysis

Anderson’s (1990) rational analysis (RA) of cognition is our most immediate

source of inspiration. To study cognition independently from its biological

implementation, RA assumes that it is adapted to evolutionary important

environments in an optimal fashion. Given an agent’s goals, a formal model of

the environment, and minimal assumptions about cognitive constraints, an optimal

behavioral function can be derived and compared with empirical data. In case of a

correspondence, RA explains cognition by assuming a functional view of the agent,

a formal model of the environment, and a process of optimization. For instance,

many effects of memory can be understood as optimal solutions to basic

information-retrieval tasks (Anderson and Milson 1989).

Despite some overlap between RA’s steps and RTA’s core components (cf.

Anderson 1990, p. 29, with Box 1, p. 4), there are substantial differences between

both approaches. For instance, RA’s notion of the environment is much wider than

RTA’s notion of the task. Whereas RA aims for formal models that capture

environmental regularities in general, RTA examines concrete tasks (like TRACS,

Tardast, or the Harvard game). RTA’s smaller scale and scope can be seen as a

limitation, but comes with gains in tractability. In fact, RA’s goal of deriving an

Rational Task Analysis: A Methodology to Benchmark... 141

123



optimal behavioral function may often be infeasible (Sanborn et al. 2010) whereas

RTA’s optimal benchmarks for concrete tasks are more readily obtained. Similarly,

RTA’s more modest focus on specific tasks allows a nuanced incorporation of

mechanistic and task-specific constraints, whereas it is difficult to see how such

moderators or interventions could be considered in RA’s more abstract notion of

environments. Both approaches also assign different weights and roles to the two

blades of Simon’s scissors. RA emphasizes the environmental blade and uses it as

an input to derive insights about cognitive mechanisms. By contrast, RTA not only

studies simpler and more specific scissors, but assumes a balanced interplay

between both blades.6 Finally, RA and RTA assign different roles to optimality. In

RA, rationality and an evolutionary process of optimization are assumed as

premises. By contrast, an explicated notion of optimality enters RTA as an upper

bound on performance, whereas the rationality of some behavior serves as a

dependent variable and possible conclusion. Thus, RTA is not just RA in a nutshell.

Computational Rationality

Two recent proposals concerned with the use of formal analysis to define and

quantify rational behavior within specified tasks are computational rationality (CR)

(Lewis et al. 2014) and its precursor cognitively bounded rational analysis (CBRA)

(Howes et al. 2009). In the tradition of computational cognitive modeling,

naturalistic constraints on cognition, perception, or motor control are typically

implemented within a cognitive architecture (Newell 1990; Meyer and Kieras 1997;

Anderson et al. 2004). CR interprets rational behavior as the solution to an optimal

program problem that subjects both environmental and mechanistic constraints to a

process of utility maximization. Although this can yield different definitions of

rationality as a variation of environmental constraints, the primary focus of CR is on

mechanistic constraints. Consequently, a key contribution of CR/CBRA is to enable

rigorous testing of the assumptions embedded within alternative cognitive

architectures.

Again, the premises and ambitions of our approach are different. RTA does not

assume an optimization process on part of the organism and is not intended as a

model evaluation or selection tool, but as a tool to aid and shape experimental

design. Rather than testing alternative models of cognition, RTA helps developing

tasks that allow to measure the bounds of rationality, and drawing unbiased

conclusions from such tasks.

Heuristics and Ecological Rationality

Studying tasks of judgment and decision-making under risk and uncertainty, the

research programs of heuristics and biases (Tversky and Kahneman 1974;

Kahneman et al. 1982) and fast-and-frugal heuristics (Gigerenzer et al. 1999,

2011) agree that humans routinely rely on heuristics, but disagree about their

6 RA’s relative neglect of agent-based constraints was also responsible for Simon’s skepticism towards

this framework (Simon 1991).
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evaluation as either involving inevitable trade-offs and systematic errors (Tversky

and Kahneman 1974) or as adaptive tools yielding accurate and robust results under

uncertainty (Gigerenzer et al. 1999, Neth and Gigerenzer 2015). RTA’s nearest

neighbor in this context is the notion of ecological rationality (ER), which involves

a research program that explicitly ‘‘investigates the fit between the two blades of

Simon’s scissors’’ (Todd et al. 2012, p. 15).7

Within ER, rationality is understood as a matter of adaptive fit between a

strategy, the environment, and the evolved or acquired capacities of agents.

Examining the interplay of this triad to evaluate the degree of fit is a challenging

process that overlaps substantially with RTA. Nevertheless, ER is both more

specific and more general than our approach. Being rooted in the research tradition

of judgment and decision-making, the strategies considered by ER typically target

choice tasks and are implemented as process models of heuristics that mimic

psychological mechanisms. By contrast, the strategies used as RTA’s performance

benchmarks address any type of task and allow for a wide range of models,

including mathematical abstractions and models with strong architectural con-

straints. The more general nature of ER is evident in its focus on different types of

environments. Whereas RTA studies and explicates the boundary conditions of

specific task environments, ER discusses the structure of environments in more

generic, often statistical terms (e.g., see Gigerenzer and Brighton 2009; Pleskac and

Hertwig 2014). In addition, ER pursues a theoretical agenda that includes ‘‘a general

vision of rationality’’ (Todd et al. 2012, p. 14) and questions traditional norms of

rationality (e.g., logical consistency) by adopting adaptive success in real-world

environments (i.e., efficient and effective solutions) as its main criterion.8 By

contrast, RTA contains no such theoretical commitment. Again, this can be viewed

as a limitation, but provides benefits in flexibility. For instance, our critique of the

Harvard game gained persuasive power by showing that melioration can be optimal

even when adopting the traditional rational norm of an ideal Bayesian learner (Sims

et al. 2013).

Other Threats to Validity

Despite its merits, RTA is no remedy against all experimental maladies and

misconceptions. Its methodological nature implies not only that it promotes no new

theory of cognition, but also includes no theory of the environment. This latter

limitation distinguishes RTA from methodological approaches like representative

design (RD) (Brunswik 1955, 1956), which is based on the theoretical framework of

probabilistic functionalism (Brunswik 1943). RD extends the principle of

representative sampling from subjects to stimuli to ensure that experimental

conditions preserve the properties of natural environments.9 As our approach

7 See Todd and Gigerenzer (2001), for a comparison of Simon’s scissors with the alternative metaphors

of Shepard’s mirror and Brunswik’s lens.
8 See the related notions of ‘‘achievement’’ and ‘‘correspondence’’ (Hammond and Stewart 2001).
9 A volume edited by Hammond and Stewart (2001) provides an overview of Brunswik’s essential

contributions.
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addresses the internal validity of rational arguments, it is equally applicable to

study—in Brunswik’s terms—‘‘a mere homunculus of the laboratory’’, ‘‘a bearded

lady at the fringes of reality’’, and ‘‘an ecological normal’’ (Brunswik 1955,

p. 204).10 Similarly, RTA provides no guarantee that subjects understand a task as

intended by the experimenter. The experimenter bias examined by RTA involves a

knowledge-gap between subject and designer regarding experimental contingencies.

By contrast, a violation of construct validity due to a mismatch of goals (e.g.,

viewing a one-shot game as an instance of repeated choice, or a competitive

situation as one calling for altruism) would be conceptualized as two different tasks.

The fact that RTA was not developed to address these issues does not render it

futile. Instead, researchers concerned about external validity and incongruent task

constructs will be just as eager to embrace RTA to exclude additional sources of

error.

Conclusion

Solving a problem simply means representing it so as to make the solution

transparent.

(Simon 1996, p. 132)

This article asked the question: How can we study bounded rationality? The

traditional answer to this question calls for controlled experiments that allow

detecting the causes and conditions of rational behavior. Rather than demanding a

radical departure from this practice, we point out that it easily leads to premature

conclusions. As a potential remedy, we propose RTA—a methodology and

perspective that analyzes specific tasks as the primary interface between agents and

environments. Clearly, RTA is more demanding than the common practice of

proclaiming an anomaly or bias whenever detecting another instance of stable

suboptimal performance. But when aiming for firm and enduring conclusions this

additional effort is indispensable and worthwhile. As RTA’s key ingredients of

explication, justification and benchmarking are not new, our main innovation lies in

the systematic integration of existing parts in a general and powerful research

methodology. Yet widespread familiarity with RTA’s core components does not

imply that it is simple or trivial. Not only does our approach differ from today’s

standard practice, but our case studies have shown that it can yield surprising

results. Thus, we suggest that—as a package—RTA makes a contribution that

deserves both a label and an audience.

In the above quote, Simon reminds us that a problem’s transparent representation

is its solution. RTA facilitates the study of bounded rationality precisely by

rendering our arguments for and against the rationality of agents more transparent.

A more widespread use of RTA would supply individual researchers with a useful

tool to protect themselves from experimenter bias and to design experiments that

10 A review of representative design and its impact on judgment and decision-making research is

provided by Dhami et al. (2004).
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allow for more robust and informative conclusions. On a more general level,

adopting RTA provides a service to colleagues and the scientific community. By

enabling a clearer communication of research results, RTA promises to reduce the

theoretical confusion caused by implicit assumptions and inconclusive findings, and

thus promote new insights into the nature of bounded rationality.
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