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Abstract
We address the problem how to select the correct answers to
a query from among the partially incorrect answer sets that
result from querying the Web of Data.

Our hypothesis is that cognitively inspired similarity mea-
sures can be exploited to filter the correct answers from the
full set of answers. These measure are extremely simple and
efficient when compared to those proposed in the literature,
while still producing good results.

We validate this hypothesis by comparing the performance
of our heuristic to human-level performance on a bench-
mark of queries to Linked Open Data resources. In our ex-
periment, the cognitively inspired similarity heuristic scored
within 10% of human performance. This is surprising given
the fact that our heuristic is extremely simple and efficient
when compared to those proposed in the literature.

A secondary contribution of this work is a freely avail-
able benchmark of 47 queries (in both natural language and
SPARQL) plus gold standard human answers for each of
these and 1896 SPARQL answers that are human-ranked for
their quality.

1 Introduction
The Web of Data has grown to tens of billions of statements.
Just like the traditional Web, the Web of Data will always be
a messy place, containing much correct, but also much in-
correct data. Altough there has been surprisingly little struc-
tured research on this topic, anecdotal evidence shows that
even the highest rated and most central datasets on the Web of
Data such as DBPedia and Freebase contain factually incor-
rect and even nonsensical assertions. Consider the following
results from some of the benchmark queries that we will dis-
cuss later, when executed against a combination of DBPedia,
Geonames and Freebase:

“AmeriCredit” is not an American car manufacturer
(instead, it’s a financial company owned by General
Motors to help customers finance their cars)
“Richard Bass” is not one of the highest summits
on the seven contintents (instead, he was the first
mountaineer that climbed all of them)
“Cosima” is not a Nobel Prize for Literature Laure-
ate (instead, it is a novel written by Grazia Deledda,

who received the 1926 Nobel Prize for Literature)
“Stig Anderson” was not one of the members of
ABBA (instead, he was their manager)

These examples (which are just a few of many) illustrate
the central problem that we tackle in this paper

given a query to the Web of Data and the result-
ing answer set, how to separate the correct from the
incorrect answers.

For well over a decade now, influential cognitive scientists
have been proposing the notion of fast and frugal heuristics:
heuristics that are surprisingly simple (sometimes even seem-
ingly naive), but that on closer inspection perform very well
on complex cognitive tasks. Their findings have shown con-
vincingly that such simple heuristics are not only justified
by gaining computational efficiency at the expense of output
quality, but that such simple heuristics can even outperform
complex decision rules [Gigerenzer et al., 1999].

The main finding of this paper is that cognitively inspired
heuristics can indeed be exploited to filter the correct answers
from the noisy answersets obtained when querying the Web
of Data. Perhaps the most surprising finding is that such
heuristics are extremely simple when compared to those pro-
posed in the literature, while still producing good results.

The overall benefit from this work is that it is now possi-
ble to efficiently select the most likely correct answers when
querying the Web of Data. Our approach has as additional
benefit that our selection heuristic can be tuned to favour ei-
ther recall or precision.

An important secondary contribution of this work is the
construction of a benchmark of general knowledge queries
with their Gold Standard answers. Each of these has also
been formulated as a SPARQL query, and the 1896 answers
to these queries have been manually ranked on their quality.
This collection is freely available for other researchers as an
important tool in benchmarking their query strategies over the
Web of Data.

The paper is structured as follows: In section 2, we first dis-
cuss the construction of this benchmark. In section 3, we re-
port on how good a human subject is in recognising the Gold
Standard correct answers for these benchmark questions. In
section 4 we discuss some of the cognitive science literature
that justifies the definition of our “fast and frugal” compu-
tational heuristic. In section 5 we then measure the perfor-
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mance of this heuristic, and we show that its performance is
comparable to that of the human subject. In section 6 we
compare our approach to related work in the literature. In the
final section 7 we compare our heuristic to those presented in
the Semantic Web literature.

2 A benchmark for querying the Web of Data
Over the past decade, the Semantic Web community has
built and adopted a set of synthetic benchmarks to test stor-
age, inference and query functionality. Some of the most
well known benchmarks are the Lehigh LUBM benchmark,
[Guo et al., 2005], the extended eLUBM benchmark [Ma
et al., 2006] and the Berlin SPARQL benchmark [Bizer and
Schultz, 2009] are all examples of these1. However, all these
are synthetic datasets. There is a shortage of realistic bench-
marks that provide realistic queries plus validated (“Gold
Standard”) answers. The sample queries on the webpages of
Linked Life Data 2 FactForge3 are examples of such realistic
queries, but they do not come with a validated set of Gold
Standard answers.
Set of questions. For an experiment investigating how peo-
ple search for information in their memory, [Neth et al.,
2009] designed a set of general knowledge questions. Each
question identifies a natural category by a domain label
(e.g.,‘Geography’) and a verbal description (e.g., ‘African
countries’) and asks participants to enumerate as many ex-
emplars as possible (e.g., ‘Algeria’, ‘Angola’, ‘Benin’, etc.).
Questions were drawn from diverse areas of background
knowledge (e.g., arts, brands, sciences, sports) and included
“Name members of the pop band ABBA”, “Name Nobel lau-
reates in literature since 1945”, etc.
Gold Standard answers. [Neth et al., 2009] determined a
set of correct answers for each question. The number of
true exemplars varied widely between categories (from 4 to
64 items). Particular care was given to the completeness of
the answer set by including alternative labels (e.g., ‘Demo-
cratic Republic of the Congo’, ‘Zaire’) and spelling variants
(‘Kongo’)4.
SPARQL queries. We have developed a set of 47 SPARQL
queries, made to resemble the questions from [Neth et al.,
2009]. For this translation, we used a number of well-known
namespaces, such as DBPedia, Freebase, Geonames, Um-
bel, etc. As an example, the question about ABBA members
translates to the SPARQL query shown in figure 1.
SPARQL answers. To complete this benchmark collection,
we executed all of our queries against FactForge5. FactForge
[Bishop et al., 2010a] is a collection of some of the most cen-
tral datasources in the Linked Open Data cloud. It hosts 11
datasets, including DBPedia, Freebase, Geonames, UMBEL,
WordNet, the CIA World Factbook, MusicBrainz and oth-

1More benchmarks are described at http://www.w3.org/
wiki/RdfStoreBenchmarking.

2http://linkedlifedata.com/sparql
3http://factforge.net/sparql
4The answers to some questions (e.g., the teams in particular

leagues) are subject to periodic changes. This renders the current
standard (which was constructed in 2009) partially out-dated.

5http://factforge.net/

SELECT DISTINCT ?member ?label
WHERE {
?member skos:subject dbp-cat:ABBA_members
?member rdfs:label ?label
FILTER(lang(?label) = "en")

}

dbpedia:Agnetha Fältskog Agnetha Fältskogen
dbpedia:Agnetha Fältskog Agneta øase Fältskogen
dbpedia:Anni-Frid Lyngstad Anni-Frid Lyngstaden
dbpedia:Anni-Frid Lyngstad Frida Lyngstaden
dbpedia:Benny Andersson Benny Anderssonen
dbpedia:Björn Ulvaeus Björn Ulvaeusen
dbpedia:Ola Brunkert Ola Brunkerten
dbpedia:Stig Anderson Stig Andersonen

Figure 1: Example query and answer-set

ers. Several schemata used in the datasets are also loaded
into FactForge, such as Dublin Core, SKOS and FOAF. Fact-
Forge uses the OWLIM reasoner [Bishop et al., 2010b] to
materialise all inferences that can be drawn from the datasets
and their schemata. This results in some 10 billion retriev-
able statements, describing just over 400 million entities. Al-
though FactForge is a subset of the entire Web of Data, it is
currently one of the the largest available subsets that is both
closed under inference and queryable.

Running our 47 queries against FactForge6 resulted in 1896
answers. An example answer-set is shown in figure 1.

The entire resource (original questions, their SPARQL
translations, the Gold Standard answers, as well as query-
results against FactForge) are available online7.

3 Human performance
In order to judge how good our heuristics will be at recog-
nising correct answers, we measured how good a human was
at this task. A human subject (educated at university level,
using the Web as a reference source, and asked to do this at
reasonable speed) ranked all 1896 answers on a 5 point scale,
with 5 indicating the answers on which the subject was most
confident that they are correct, and 1 indicating answers on
which the subject was most confident they were incorrect 8,
9. We are now interested in the question whether the human
subject can recognise correct answers with sufficiently high
confidence. For this, we introduce the following notations:

Notation:
We use Q to indicate the query, with Q ranging from #1 to
#47 in our benchmark collection.
The set of Gold Standard answers to query Q is written

6version of August 2010
7http://www.larkc.eu/resources/

published-data-sources
8These human rankings are also available from the aforemen-

tioned URL.
9Because this was only a single human judge, we cannot measure

how reliable the scoring is, since we have no measurement for inter-
subject agreement. This would be a useful piece of future work to
strengthen the value of our dataset



G(Q).
The set of retrieved answers to query number Q are written
A(Q).
The set of answers to query Q that were scored with a
confidence ranking of T or higher is written as AT (Q),
T = 1, .., 5.

Obviously, A1(Q) = A(Q) (all answers are included at
confidence threshold T = 1), and the size of AT (Q) de-
creases with increasing T .

In our experiment described below, the size of G(Q) is
typically a few dozen items (since this is how the cognitive
scientists designed their queries). The size of A(Q) varies
greatly from a dozen to several hundreds, showing that some
answer sets contain many wrong results, i.e. A(Q) 6✓ G(Q),
for some Q. We will see below that also G(Q) 6✓ A(Q) for
some Q, ie FactForge is not complete for all of our queries.

To judge the performance of our human subject in recog-
nising correct answers, we will plot the recall and precision of
AT (Q) as a function of his confidence threshold T , where the
correctness of the answers in AT (Q) is determined against
G(Q). The comparison of the SPARQL results in AT (Q)
against the (natural language) elements in G(Q) is done us-
ing the rdfs:label of the elements in AT (Q).

Example query. As an illustration, Figure 2(a) shows the
performance of our subject on query Q = #31: “What are
the highest mountains (peaks) of each continent”. At thresh-
old level T = 5 (i.e. when aiming to select only the answers
about which he is most confident that they are correct), the
subject scores a precision of 1.0 but recognises only N = 4
out of the 7 summits, ie the recall is only 0.57. When includ-
ing answers at lower confidence levels, the recall increases,
finally reaching 1.0 at T = 1. This shows that FactForge
does indeed contain all correct set answers for this query, i.e.
G(#31) ⇢ A(#31). However, the increase in recall goes at
the cost of also including some incorrect answers, with preci-
sion dropping to a final 0.5. The maximal performance (using
the macro-averaged F-measure to combine precision and re-
call) is F=0.86, and is reached at confidence threshold T = 4.
Accumulated results. Figure 2(b) shows the recall and pre-
cision figures of our human subject accumulated over all 47
queries. It shows that even at T = 1 the recall is only just
above 0.6. This tells us that FactForge is indeed incomplete
for our set of queries, and it is simply impossible for any sub-
ject (human or machine) to do any better on this set of queries.

Figure 2(b) shows a near perfect performance by our hu-
man subject: when increasing his confidence levels T , the
precision of AT (G) increases from 0.25 to 0.75, while paying
almost no penalty in decreasing recall (dropping from 0.6 to
0.5). In other words: when stepping up the confidence level
from T to T + 1, the sets AT+1(G) have lost some of the
wrong answers that were still in AT (G) while maintaining
most of the correct answers in AT (G). Or stated informally:
our subject is actually rather good at recognising the correct
answers from among AT (G). In terms of the graph in Figure
2(b), a perfect performer would result in a vertical plot (in-
creasing precision at no loss of recall). The human subject

comes close to that perfect plot. Consequently, the highest
score (F=0.60) is obtained at confidence threshold T = 5.

4 Definition of selection heuristic
Fast and Frugal Heuristics. Biological cognitive agents
(be they human or animal) have to perform a similar task on
a daily basis: given a set of possible alternatives, which ones
are “the best”, ranging from distinguishing edible from ined-
ible foods to deciding if another agent is friend or foe. Al-
ready in 1969, Herbert Simon [Simon, 1969] noted that this
selectivity is based on rules of thumb, or heuristics, which cut
problems down to manageable size. The idea is that the world
contains an abundance of information and the solution is not
necessarily to integrate as much information as possible, but
rather to select some information and use that for reasoning.

In the late 20th century there was a debate between deci-
sion theorists on whether these rules of thumb had positive
or negative consequences for the quality of decisions humans
were making. In the heuristics and biases program, exam-
ples are shown where people make faulty decisions in situa-
tions containing uncertainty, as measured by what is expected
of them from the optimal result in probability theory [Tver-
sky and Kahneman, 1974]. The other side of the debate is
the fast and frugal heuristics program, where situations are
shown where simple rules requiring little information per-
form as well as (and, surprisingly, in special cases better than)
algorithms attempting to reach the optimum [Gigerenzer et
al., 1999].

Such fast and frugal heuristics which in given situations
outperform classical methods while using substantially less
information and computational resources, are also relevant
outside the area of cognitive science. Whether or not these
algorithms acurately describe human (or animal) cognition,
we can use these heuristics for complex decision making out-
side of the mind, in a computational setting.

The relevance to the Semantic Web lies in that these algo-
rithms could improve yield without damaging quality exces-
sively: producing the results we want at lower computational
costs, but not guarantying optimal quality or completeness of
results. In a term coined by Simon, we wish to satisfice [Si-
mon, 1956].
Similarity as a heuristic. If one thinks about a query as
defining a target region in some semantic space, one would
expect the results of the query to be clustered in that target
region. That is, the results that are most similar to each other
are most likely to be close to the center of the targeted region.
It seems reasonable to assume the the farther away a result is
from the center of this estimated target region, the more likely
it is to have been included in the results due to error.

Two classical approaches to formalizing similarity are fea-
tural approaches, epitomized in Tversky’s contrast model
[Tversky, 1977], and spatial models [Shepard, 1957]. In spa-
tial models, similarity is defined as the distance in a defined
metric space between two items. Spatial models have prede-
fined spaces and each item is a separate point in the space,
making symmetrical similarity natural. Tversky’s contrast
model focuses on features shared between items and features
not shared between items. Similarity is then defined by the



Figure 2: Performance of human subject: (a) on an example query and (b) accumulated results

Figure 3: Performance of the similarity heuristic: (a) on an example query and (b) accumulated results

proportion of shared features in the total features of an item
Computational definition of similarity. Tversky’s similar-
ity model based on shared features fits very naturally with
the datamodel underlying RDF: an “item” is a URI s1, a
“feature” is a triple hs, p, oi, and two features are shared be-
tween two items s1 and s2 if they have the form hs1, p, oi
and hs2, p, oi. For example, two objects share a feature
if they both have a skos:subject property with object
dbp-cat:ABBA members. Formally:

Definition 1 the similarity S(s1, s2) between two resources
s1 and s2 in a graph G is defined as:

S(s1, s2, G) = ||{(p, o)|hs1, p, oi 2 G and hs2, p, oi 2 G}||

i.e. similarity is defined as the number of feature-value pairs
in G that are shared between s1 and s2. This looks even sim-
pler as a schematic SPARQL query:

SELECT COUNT(?p)
WHERE {<s1> ?p ?q

<s2> ?p ?q}

where <s1> and <s2> must be replaced by specific URIs.

This similarity measure can now be used to define a heuris-
tic confidence estimate for query-answers:
Definition 2 The confidence estimate C(a,Q,G) for an an-
swer a 2 A(Q) to a query Q over a graph G is defined as

C(a,Q,G) = ⌃a02A(Q)S(a, a
0
, G)

i.e. the confidence estimate of an answer a is simply the ag-
gregate similarity of a to every other answer a0. This sim-
ilarity heuristic is similar to the “clustering hypothesis” as
it is known from Information Retrieval [Tombros and Van
Rijsbergen, 2001], namely that relevant documents tend to
be more similar to each other than to non-relevant ones, and
therefore tend to appear in the same clusters.
Alternatives. Of course a number of variations on this defini-
tion would be possible. Instead of counting the total number
of shared features hs1, p, oi, we could calculate the fraction
of shared features, as suggested in [Tversky, 1977]. Because
of the fairly uniform arity of the nodes in RDF graphs, we
would not expect this to make much difference.

We could also have used the weaker definition of only
counting shared properties p without demanding that they



have the same values: hs1, p, i and hs2, p, i. For ex-
ample: two objects are similar if they both have a
dbp-prop:manufacturer property, even if that prop-
erty has different values. However, due to the weak nature
of many of the features (e.g. rdf:type, skos:subject)
we expect that this will generate too high similarity ratings.

More reasonable would be to include shared inverse fea-
tures ho, p, s1i and ho, p, s2i. This would account for
inverse modelling in the RDF graph, for example us-
ing is-manufacturer instead of manufactured-by.
Such inverse properties are rare in FactForge, but this would
be worth further investigation.

5 Heuristic performance
We are now in position to measure how good the heuristic
from Def. 2 is at selecting the correct answers for a query. In
order to use the same evaluation procedure as for the human
subject in section 3, we divide for every query Q the interval
[mina2A(Q)C(a,Q,G), maxa2A(Q)C(a,Q,G)] uniformly
in 5 equal steps.

Figure 3(a) shows the performance of our similarity based
confidence estimate on the same “seven summits” query as
in Figure 2. Trivially, the heuristic performance at the lowest
confidence level equals that of the human performance at the
lowest confidence level, at a reasonably high F-value of 0.43,
achieved with trivially accepting all answers as correct. This
is caused by the high quality of FactForge. Just as the human
subject, the heuristic achieves a precision of 1.0 at the highest
confidence level, but only manages to do so at a very low re-
call of 0.28 (2 out of 7), whereas the human subject managed
to maintain a recall of 0.57 (4 out of 7).

Figure 3(b) shows the performance of the similarity based
confidence estimate accumulated over all queries (as Figure
2(b) did for the human subject). The conclusion from this
comparison is mixed: On the one hand, the human recall-
precision curve lies everywhere above the heuristic curve, on
the other hand the highest heuristic F-score (F = 0.53) is
within 10% of the highest human F-score (F = 0.60). This
is all the more surprising since our heuristic uses no back-
ground knowledge whatsoever, and only counts the number
of shared feature-value pairs between the members of the an-
swer set. This lends some support to the conclusion that well
chosen very simple “fast and frugal” heuristics can achieve
high performance levels.

6 Related work
The topic of “ranking” query results has been studied since
the early days of the Semantic Web, and is itself based on
even longer lines of research in fields such as Information
Retrieval. In fact, our heuristic is closely related to the “clus-
tering hypothesis” as it is known from Information Retrieval
[Tombros and Van Rijsbergen, 2001]. Our space is insuffi-
cient here to provide an extensive literature survey. Instead,
we will discuss a few salient differences between our ap-
proach and the literature:

Some of the literature on ranking is concerned with rel-
evance ranking: determining which answers are relevant to
an unstructured query in natural language, or relevant for

a user based on their profile (see [He and Baker, 2010;
Stojanovic et al., 2003; Anyanwu et al., 2005; Hurtado et al.,
2009] and others). Although interesting and important, this
work is not pertinent to the current paper, since we start with
SPARQL queries (hence query-relevance is not an isssue) ,
and we are not considering user-profiles, but we are trying to
recognise objectively true answers.

Another part of the literature is concerned with ranking an-
swers by importance. Typically, this is done by a variety of
pagerank-style analysis of the structure of the Semantic Web,
trying to locate which resources are more important, more
authoratitive, more trustworthy, etc. [Bamba and Mukherjea,
2005; Ding et al., 2005; Anyanwu et al., 2005] . Our ap-
proach differs from all this work in an important way: we do
not do any a priori analysis of the structure of the large RDF
graph that we are querying (a graph with billions of edges
and hundreds of millions of nodes). Instead, we only take the
URIs that are returned as a result of a query, and we compute
some very simple local properties of these URIs (namely the
number of shared feature-value pairs). As we have shown
in section 4 this is, surprisingly, already enough to rank the
answers such that the best answers get a high ranking, per-
forming within a 10% range of human performance.

Some of the literature on ranking deals with ranking dif-
ferent kinds of objects from what we consider: [E.Thomas
et al., 2005; Alani et al., 2006; Tartir and Budak Arpinar,
2007] and others rank ontologies, Swoogle ranks Semantic
Web documents [Ding et al., 2005], [Vu et al., 2005] and
others rank services, etc. These works rely on fairly sophis-
ticated analyses of the object-to-be-ranked: internal structure
of the ontologies, semantic descriptions of the functionality
of the services, etc. Instead, we rank only sets of atomic
URIs (the members of A(Q)), and Although it might seem
harder to rank such simple objects, since they come with very
little structure to base the ranking on, we have shown in sec-
tion 4 that a simple analysis of very little information is suffi-
cient to obtain good ranking results, in line with the “fast and
frugal heuristics” hypothesis proposed by [Gigerenzer et al.,
1999]. It would be interesting to investigate if such simple
(or even: simplistic) analysis would also yield good results
when applied to more complex objects such as ontologies or
services, potentially replacing the more sophisticated ranking
techniques found in the literature until now.

A work that is quite close in aim to ours is [Lopez et al.,
2009]. Their ”semantic similarity” is similar in spirit to ours:
it tries to spot wrong answers through their large semantic
distance to many of the other answers. However, the semantic
distance in [Lopez et al., 2009] is calculated as the distance
in a shared ontology. Ours is a much simpler method: we
need no ontology at all, and distance is simply calculated as
the number of shared feature-value pairs.

7 Conclusion
In this paper, we have shown that a simple cognitively in-
spired heuristics can be used to select the correct answers
from among the query results obtained from querying Linked
Open Data sets. Our heuristic is extremely simple and ef-
ficient when compared to those proposed in the literature,



while still producing good results, on a par with human per-
formance.

Our work differs from previous work in the following im-
portant ways: Firstly, we do not require any expensive prior
pagerank-style analysis of the structure of the entire data-
space we are querying. Instead, we do a simple count over in-
formation local to the URIs that are returned as query results.
In the worst case, the cost of our analysis is limited to re-
trieving all properties of all elements in the answer set, a cost
which is negligible when compared to the large scale network
analysis needed for most ranking approaches. Also, any such
a prirori large scale link-analysis is likely to be outdated when
it is needed for querying. The information that our heuristic
needs is so simple that it can be retrieved at query time itself,
and is hence always up to date.

Secondly, we do not require any background knowledge or
inferencing. No reference is made to any ontological back-
ground knowledge, it is not necessary to relate any answers
to a shared ontology, and no inference of any kind is per-
formed by our fast-and-frugal heuristic. All we require is to
simply retrieve the properties of the elements in the answer
set. These are simple atomic queries of the form hs, ?, ?i, that
are efficiently supported by the index-structures of any triple-
store.
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