
We routinely manage complex systems in the
pursuit of specific outcomes: achieve a good GPA
by graduation, maximize the monthly amount of
energy produced by a power plant, or race a sail-
boat as far as possible within a day. Ironically,
whereas accurate and reliable feedback on how
well these goals are being achieved may help us
to assess degrees of success or failure, such feed-
back by itself may be inadequate to guide progress
toward achieving our goals.

In this article, we propose a functional distinc-
tion between outcome feedback and control feed-
back, where outcome feedback enables us to assess
how well we have done in achieving our long-term
goals, and control feedback allows us to set short-
term goals for immediate action. These two types
of feedback correspond to different levels of ag-
gregation, with the former providing a global sum-
mary of performance and the latter representing a

local (smaller and more recent) performance in-
terval.

We dissociate outcome feedback from control
feedback in the context of the Tardast task envi-
ronment (Shakeri, 2003; Shakeri & Funk, 2007).
Tardast is a dynamic multitasking system that re-
quires human operators to maximize the overall
output of six concurrent subtasks over a specific
period of performance. The original Tardast sys-
tem continuously provided outcome feedback by
directly reporting the operator’s overall success as
measured by the current value of the outcome vari-
able of interest. Studies with this system yielded
the conclusion that human performance was sub-
optimal compared with the near-optimal solution
of a machine-learning algorithm.

The finding of stable suboptimal human per-
formance (Fu & Gray, 2004) is the beginning of
a research program, not its end. We will show that
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control feedback, by virtue of being more respon-
sive to local system changes, yields better per-
formance by allocating actions more adaptively.
Consequently, we conclude that performance on
Tardast was limited not only by the cognitive ca-
pacity of its human operators but also by data lim-
its inherent to its original feedback score.

In the following section, we introduce the
Tardast task environment and our notion of per-
formance feedback before elaborating on the feed-
back types and hypotheses of our study. We then
present an experiment that compares two human
groups with different feedback scores and con-
trast their performance with two mathematical
models that provide theoretical benchmarks. Our
results demonstrate that local control feedback
yields better performance than global outcome
feedback and is used more extensively, as shown
by an eye gaze analysis. In the concluding section,
we sketch a general framework for the functional
analysis of performance feedback and explore the
implications of our results for the design of dy-
namic feedback mechanisms.

BACKGROUND

The Tardast Task Environment

Tardast (Shakeri, 2003; Shakeri & Funk, 2007)
is a novel paradigm that allows the study of human
multitasking by mapping a variety of behavioral
scenarios to an abstract framework. Named after
the Persian term for “juggler,” the system is based
on the analogy that a juggler’s feat of spinning
plates on vertical poles can represent the concur-
rent management of multiple tasks that coexist
without predefined completion criteria. As multi-
tasking and the related tasks of monitoring, super-
visory control, and complex system management
(e.g., Berry & Broadbent, 1988; Moray, 1986) are
poorly understood, a synthetic task environment
that captures their essential elements while ab-
stracting away from domain-specific details is an
important research tool (Gray, 2002).

At the core of any multitasking situation lies a
resource allocation problem: Because cognitive,
perceptual, and action resources are limited, hu-
mans have to negotiate trade-offs when deciding
which task to do when. In Tardast, n vertical bars
abstractly represent competing tasks (see Figure1).
The height of the ith bar indicates the correspond-
ing task’s current satisfaction level (SLi) and de-
creases at a constant deviation rate (DRi) whenever

not acted upon. A task’s status is improved by
pressing a button underneath the bar, which in-
creases the task’s SLi at a constant correction rate
(CRi). Aserial bottleneck exists in that only a sin-
gle task can be acted upon at any time. As tasks
can differ in weight (Wi) and rate parameters (DRi/
CRi) and the system state is subject to constant
changes, maximizing overall performance is non-
trivial.

Shakeri and Funk (2007) contrasted human
performance in several Tardast scenarios with the
near-optimal performance of a machine-learning
algorithm (see Glover, 1990, for details on Tabu
search) and found human operators to be lacking
in comparison. This shortcoming was attributed
to poor strategic task management. As the com-
plexity of the system exceeded human resource
limitations, operators failed to prioritize impor-
tant tasks.

Neth, Khemlani, Oppermann, and Gray (2006)
replicated the basic phenomenon of stable subop-
timal performance with additional experimental
controls. By assessing operators’ improvement
over time, we verified that performance indeed
asymptotes at a suboptimal level. Although we ar-
gued that the observed performance differences
between scenarios have mostly been a function of
the task environment, we essentially confirmed
Shakeri and Funk’s (2007) conclusions.

Our present emphasis is different. Struck by the
gap between human and optimal performance,
we wonder why such a relatively simple system
seems to exceed human processing capacities:
The number of concurrent tasks is small, all rele-
vant parameters are accessible, the scoring scheme
is explained in detail, the temporal demands are
moderate, and there are no hidden dependencies
or delayed consequences of actions. We now be-
lieve that the feedback provided to operators is
partly responsible for their poor performance.

Cognitive processes can generally be con-
strained by limited processing resources and 
limits to the data that are processed (Norman &
Bobrow, 1975). If a change in the feedback mech-
anism results in improved system management,
the original performance was limited not only by
human resources but also by the system’s design.
Simply put, our diagnosis is that the original feed-
back score made it difficult to judge which states
of high quality can be achieved and sustained. To
substantiate this claim, we need to consider the
general effects of feedback on performance and
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specify our functional analysis of feedback for the
Tardast system.

Dimensions of Feedback

The use of feedback to regulate the behavior of
dynamic systems – by passing back some aspect
of the system output as input – is one of the pil-
lars of cybernetics and control theory (Wiener,
1948). In the terminology of a closed-loop control
system, a feedback score serves as a sensor that
provides a reference signal to an operator, who
monitors discrepancies between actual and de-
sired states, initiates corrective actions, and eval-
uates the effects of actions on the system to meet
certain criteria.

When invoked as an explanatory concept in
technological, biological, or social systems, the
definition of feedback may become so vague and
flexible as to be “artificial and of little use” (Ashby,
1956, p. 54). Within psychology, the notion in-
cludes factors as diverse as reward and punish-
ment, encouragement and criticism, and other
verbal or nonverbal information about different as-
pects of performance. In the context of this study,
we view feedback as an interface between system

states and an operator’s perceptions and actions.
To avoid confusion, we restrict the term feedback
to denote a numerical index of performance. In ad-
dition, we focus on feedback that integrates mul-
tiple aspects of performance into a single summary
value. Such composite measures contrast with
concurrent displays of multiple indices that high-
light different aspects of the system.

Although feedback needs to accurately reflect
performance, the design of any particular feedback
signal is selective. For dynamic systems, three im-
portant dimensions are the scope, frequency, and
update lag of any feedback signal:

• Scope is the amount of performance considered
when one computes the numeric feedback value. A
key distinction is between local and global feedback.
Whereas local feedback is limited in scope (e.g., a
single assessment of system state), global feedback
integrates over multiple measurements (e.g., the
sum or average of all states so far).

• Frequency refers to the interval at which the feedback
signal is updated. A common case is that feedback
frequency corresponds to the system cycle time, but
both shorter and longer intervals are possible.

• Update lag is the delay between a change in system
state and the update of the feedback signal.

Figure 1. Our Tardast interface showing six concurrent tasks. Each vertical bar represents a task, and the height of the
black portion indicates its current satisfaction level (SL). Pressing one of the buttons underneath a bar increases the SL
of the corresponding task. The numbers (5, 2, 6, etc.) on the buttons provide each task’s weight W. At each system cycle,
the Ws and current SLs of all tasks are integrated to update a numerical feedback score at the top (see Equations 1–3).
The horizontal progress bar below the score indicates the time remaining for the scenario.
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Providing Feedback in Tardast

Tardast is updated every 100 ms, and an aggre-
gate feedback score is recomputed and displayed
at the top of the screen (see Figure 1) on each sys-
tem update. Characterized by our three dimensions,
this score is global in scope and high in frequency,
with minimal update lag. As these latter two prop-
erties provide a continuous and instantaneous
feedback signal implemented in many technical
systems (e.g., odometers and speedometers), we
focus on variations of feedback scope.

A Tardast operator’s goal is to manage multi-
ple concurrent tasks so as to maximize the total
weighted average score (TWAS), which is com-
puted as the weighted and normalized average 
of all n tasks’ satisfaction levels SLi(t) averaged
over all T time steps elapsed so far:

TWAS(T) = (1)

(For the sake of clarity we do not explicitly rep-
resent the fact that tasks with an SL of zero incur a
20% penalty.) To comprehend the implications of
this score, one should interpret the term in brack-
ets as an index of system quality Q(t) at a particu-
lar time t:

Q(t) = (2)

Substituting Q(t) into Equation 1 yields

TWAS(T) = Q(t) (3)

Thus, TWAS represents global system quality
by averaging over all local quality values Q. Be-
cause TWAS provides the criterion by which per-
formance in Tardast is ultimately assessed, it also
provides perfect outcome feedback.

Analysis and Hypotheses

Under a functional framework, the utility of
any feedback signal depends on its uses. Hence,
perfect outcome feedback may provide subopti-
mal control feedback. Our case against TWAS as

a control feedback score rests on two intuitions.
First, by being a cumulative average, TWAS be-
comes increasingly insensitive to quality fluctu-
ations. The same change in Q will have smaller
effects on TWAS if it occurs later in a scenario.
In addition to its increasing inertia, TWAS poorly
represents the direction of changes in Q. If Q in-
creases from step t to step t + 1, TWAS will still
decrease if Q(t + 1) < TWAS(t). Similarly, it is pos-
sible for TWAS to increase while Q decreases or to
change while Q remains constant (and vice versa).
Thus, neither the magnitude nor the direction of
changes in TWAS necessarily coincides with cor-
responding changes in Q.

But why would monitoring Q benefit the oper-
ator when Tardast performance is evaluated by
TWAS? Our second intuition relies on Equation 3:
to maximize TWAS, an operator’s objective is to
achieve a state of high system quality for as often
and long as possible. As an analogy, consider the
task of setting a new 24-h speed-sailing record.
The dynamic system of ship and sea depends on
many variables (e.g., the weather, the vessel’s
weight and shape), is subject to sudden changes
(of winds and currents), and allows for a variety of
actions (steering, setting sails, adjusting the keel,
etc.). Crucially, the effects of each action are not
obvious and depend on the interactions between
multiple factors. To ratify a record, one must ob-
tain a precise outcome measure: What total dis-
tance did the ship traverse? But such an aggregate
measure may not be the most useful for the sailor,
who is aiming to maximize the ship’s speed at
any moment of the journey. Tardast operators are
in the same boat as our sailor: By preserving the
history of all previous states in its aggregate value,
TWAS provides global outcome feedback at the
expense of responsiveness to local changes in sys-
tem quality.

We hypothesize that control feedback provided
by Q will yield better performance and be more
relied on than is TWAS. Although Q is memory-
less, it is potentially more action relevant as it ac-
curately reflects the magnitude and direction of
momentary changes in system quality. Acounter-
intuitive consequence of this prediction is that Q
will increase performance outcome by not provid-
ing outcome feedback.

EXPERIMENT

Our study contrasts two extremes: local feed-
back that provides only snapshots of current system
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quality versus global feedback that provides an ag-
gregate measure of overall performance. We im-
plemented this manipulation of feedback scope
between groups by making the score at the top of
the Tardast interface (see Figure 1) either Q(t) or
TWAS(T).

In addition, we contrast human performance
with that of two artificial agents that were pro-
grammed in Lisp and interact with the same 
software environment as human participants. A
random agent does not have any task-specific
knowledge and establishes a performance base-
line by randomly selecting a task every 10 s and
completing each scenario 100 times. By contrast,
our heuristic agent executes a simple determinis-
tic strategy that could, in principle, be adopted by
humans. At the beginning of a scenario, it estab-
lishes a preference order of tasks by ranking tasks
based on the perceptually salient parameters W
and DR, using DR only when weights are equal.
It then raises its most favored task to a threshold
(90% SL) before engaging less favored ones in the
order of their rank. Every 3 s, it inspects the SL of
its current and any more preferred task and selects
the most preferred task below threshold. This
effectively leads to a behavior that keeps two to
three tasks at high levels (of approximately 85%
SL). (We elaborate later on the implications of the
3-s cycle for human performance.) Both artificial
agents explore the properties of the task environ-
ment and provide reference values for anchoring
human performance.

METHOD

Participants

Twenty-four undergraduate students of Rens-
selaer Polytechnic Institute (mean age of 19.0)
volunteered to participate for course credit.

Apparatus and Materials

The experiment was run on an Apple G4 com-
puter (running Mac-OS 10.4) at a 1024-by-768
screen resolution. Participants’ eye data were 
collected using an LC Technologies tracker at a 
16-Hz sampling rate. Achinrest was used to stabi-
lize head movements and ensure a fixed viewing
distance of 60 cm.

Our version of Tardast was implemented in
LispWorks 4.4 and matched all functional char-
acteristics of the original software. In addition, we
used the five scenarios that were used in previous

Tardast studies. All tasks of one scenario have
identical parameter settings, whereas three sce-
narios vary along one parameter dimension (DR,
CR, and W, respectively), and the tasks of a fifth
scenario vary along all three dimensions (see
Shakeri & Funk, 2007, for values and underlying
rationale). We also adopted the original conven-
tions for the initialization (all tasks at 50% SL) and
duration (5 min) of scenarios but randomized the
six task positions on the screen for each scenario
to avoid confounds of parameter values with task
positions.

During performance, participants received
feedback through a numerical display at the top
left of the task interface (Figure 1). The local feed-
back condition presented Q(t), whereas the global
feedback condition presented TWAS(T). Both
scores were continuously updated (every 100 ms)
and were labeled current quality score or total
weighted average score, respectively.

Design

All participants performed two blocks of five
5-min scenarios. The order of scenarios was ran-
domized for each participant on the first block and
repeated for the second block. As we do not have
any hypotheses about scenario-specific effects, and
because Shakeri and Funk (2007) advise against
comparisons between scenarios, we will average
across scenarios (i.e., treat them as samples from
the population of possible scenarios). Thus, our
study includes the between-subjects factor of
feedback scope (local vs. global) and the within-
subjects factor of block (1 vs. 2).

Procedure

Participants were tested individually. Instruc-
tions were modeled on those of Shakeri (2003).
All participants first read a one-page instruction
sheet that described the task and contained an ex-
plicit verbal description of their respective feed-
back score. They then watched a short movie that
demonstrated the interaction with Tardast without
conveying a particular strategy. Participants were
instructed to maximize their score at all times (on
each scenario and over all 10 scenarios) but were
not informed about the repetition of scenarios
between blocks. Instructions were followed by a
30-s eye-tracking calibration sequence.

After each 5-min scenario, all participants re-
ceived feedback on the basis of TWAS and their
average TWAS score over all scenarios completed
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so far. Participants took a short (2- to 5-min)
break between blocks. The experiment was com-
pleted within approximately 80 min, including
instructions.

RESULTS

We present an analysis of three sets of data:
first, empirical data collected from human par-
ticipants; second, predictions yielded by our two
software agents and their comparison with human
data; and third, eye gaze data collected from hu-
man participants.

Human Performance by Feedback
Condition

The mean performance score (TWAS) of hu-
man participants in the global feedback condition
was 232.2 on the first block and 337.5 on the sec-
ond block. Participants in the local feedback con-
dition achieved mean scores of 339.9 and 413.1
(Figure 2).

A mixed analysis of variance (ANOVA) of
mean performance scores by feedback scope and
block yielded a significant main effect of block,
F(1, 22) = 47.03, MSE = 2032.33, p < .001; the
hypothesized significant main effect of feedback

scope, F(1, 22) = 11.32, MSE = 8896.84, p = .003;
and no significant interaction, F(1, 22) = 1.52,
MSE = 2032.33, ns. Thus, participants’mean per-
formance increased over blocks, and participants
in the local feedback condition reliably outper-
formed those in the global feedback condition.

Human Versus Agent Performance

Figure 2 also contains two theoretical bench-
marks derived from our software agents. A lower
performance baseline with a mean TWAS score
of 231 was established by running the random
agent 100 times on each of the five scenarios. The
heuristic agent performed at an average TWAS
of 429. As our agents have no built-in learning
mechanisms, their performance is identical on
both blocks.

Compared with these benchmarks, partici-
pants in the global feedback condition performed
at baseline level on the first block. Despite
improving significantly on the second block, they
failed to reach the performance of the simple
heuristic strategy. By contrast, participants in the
local feedback condition exceeded baseline per-
formance on the first block and reached the level
of the heuristic agent on the second block.

0

100

200

300

400

500

1 2

Block

T
W
A
S

Humans with global feedback (TWAS)

Humans with local feedback (Q)

Heuristic agent

Baseline agent (100 runs)

Figure 2. Performance comparison between human participants and artificial agents by block. Mean performance
scores of humans in the global (TWAS) and local (Q) feedback conditions are compared with each other and with the
performance of baseline and heuristic agents. All assessments of performance employ the TWAS metric. (Error bars
denote 95% confidence intervals. As the heuristic agent is fully deterministic, it has no variance.)
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Eye Gaze Measures

Eye gaze data provide additional evidence that
local feedback was more instrumental in guiding
behavior than global feedback. To assess the
amount of visual attention that participants di-
rected toward feedback, we counted the propor-
tion of eye gaze samples that fell in the rectangular
(7-by-3 cm) region surrounding the numerical
score. (Two participants, one from each condition,
were excluded from this analysis because of eye
tracker calibration problems.)

On average, 9.1% of participants’ eye gaze
samples in the global feedback condition fell in the
score region. The corresponding percentage in
the local feedback condition was 15.6%. Amixed
ANOVA of eye gaze samples in the score region
by feedback scope and block yielded a significant
main effect of feedback scope, F(1, 20) = 5.6,
MSE = 84.60, p < .028, but no significant main ef-
fect of block, F(1, 20) < 1, MSE = 17.20, ns, or in-
teraction, F(1, 20) < 1, MSE = 17.20, ns.

In summary, participants generally improved
with experience, but those in the local feedback
condition performed better and looked more at
the numerical feedback score than those in the
global feedback condition. Only participants with
local feedback outperformed the baseline agent
in Block 1 and reached the level of the heuristic
agent in Block 2.

DISCUSSION

All participants interacted with the same sys-
tem and had the same set of actions at their dis-
posal. Hence, the superior performance in the local
feedback condition supports our hypothesis that
local feedback allows better control of a dynamic
multitasking system than global outcome feed-
back. Our attribution of the performance gap to our
feedback scope manipulation is corroborated by
eye gaze data: Participants in the local feedback
condition paid more attention to the feedback dis-
play than those in the global feedback condition.

Despite these encouraging results, we must not
overinterpret the benefits of local instead of global
feedback. Although performance with Q in the sec-
ond block was in the range of our heuristic agent,
a mean score of 413.1 is still suboptimal when
compared with the near-optimal solution of Tabu
search, which achieved an average score of 539.3
(Shakeri, 2003). However, as Tabu represents a

machine-learning approach to system control, it
may be unreasonable to expect boundedly rational
humans to perform at the level of a normative
machine-learning solution (Geisler, 2004; Simon,
1992). Although human performance is still sub-
optimal, it improved significantly by a small
change in the numerical feedback signal. This
finding confirms our conjecture that performance
on the original Tardast system was limited not only
by system complexity but also by feedback design.

GENERAL DISCUSSION

The design of any feedback signal entails
choices and requires trade-offs. The same infor-
mation can be accumulated to show how well we
have done in achieving our goals or used to pro-
vide snapshots that assess the results of recent
actions. Even when performance is ultimately
evaluated by a global criterion, an outcome mea-
sure that continuously updates global performance
is not necessarily a good reference signal for con-
trolling the system. In the remaining sections, we
will explore the implications of this gap between
outcome and control feedback and flesh out our
functional perspective on performance feedback.

A Functional Framework for Performance
Feedback

We originally defined the difference between
local and global feedback in terms of aggregation.
However, an important consequence of this dif-
ference in aggregation is the differential temporal
dynamics of the two measures. As human control
and Tardast each represents complex, dynamic
systems, an important component of the success
of Q lies in the match between its temporal dy-
namics and those of its human users. To analyze
this interaction, we consider three elements: (a)
how the dynamics of system changes are reflected
in the feedback measure, (b) the dynamics of the
control of interactive behavior, and (c) the inter-
action of feedback with human control.

First, the parameters of a Tardast scenario limit
the rate at which Q can change. Over most of its
range, Q changes gradually and can maximally
vary around 3% per second. This moderate rate of
change implies that the lower digits of its three-
digit numerical representation change rapidly,
whereas the higher digits remain relatively stable.
Interestingly, such temporal considerations have
no predictive validity for human performance
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unless they are related to the time scale of human
activity (see Newell, 1990, chap. 3, for an ex-
tended discussion).

Second, the basic decision cycle for routine
interactive behavior, unlike deliberative problem
solving, is defined by the unit task. The unit task
“partitions the behavior stream” (Card, Moran, &
Newell, 1983, p. 385) beneath the level at which
the task hierarchy is defined by the task itself and
at the level at which task structure is defined by
the control problems faced by the user. Unit tasks
range in duration from 3 to 30 s with an internal
structure composed of steps that range in dura-
tion from 1/3 to 3 s.

We assume that with more experience, as per-
formance becomes routine, the basic human deci-
sion cycle in Tardast tends toward the lower end
of the unit task range. A decision cycle of around
3 s seems like a good match to the rate of change
in the Q score. Both TWAS and Q are updated in-
stantaneously and continuously available upon
demand. Just as with our analogy of the sailor, con-
trolling Tardast requires its operator to frequently
assess the system’s current state, observe trends,
and compare the quality of different states over
time. Q directly enables each of these tasks, where-
as TWAS does not.

Third, as a consequence, control feedback pro-
vided by Q allows the unit task to bridge Norman’s
(1988) gulfs between intentions and their realiza-
tions. The gulf of evaluation is the degree to which
the system provides representations that can be
perceived and interpreted in terms of the opera-
tor’s expectations and intentions. While Tardast
operators control the system, their intention is to
achieve and maintain states of high system qual-
ity, not evaluate overall success. If the operator’s
perceptions and actions are out of sync with the
dynamics of the system, its control becomes dif-
ficult or impossible.

The gulf of execution is the difference between
the operator’s intentions and the actions supported
by the system. Tardast operators constantly face
the decision as to whether a different action would
be better than the current one. One way to deter-
mine this is to act and then evaluate the effects of
one’s actions. Thus, in tasks that require repeated
decision-act cycles, bridging the gulf of evaluation
is a prerequisite to bridging the gulf of execution.
Control feedback allows the operator to evaluate
the current system state and to judge whether re-
cent actions achieved that goal and hence should

be continued. In other words, Q provides both
feedback and feed-forward information.

In summary, our local feedback score Q accu-
rately reflects current system quality and changes
slowly enough to not overwhelm human opera-
tors and fast enough to allow the perception of
trends and the effects of interventions. Human per-
formance is facilitated if all perceptual, cognitive,
and motor elements required to decide whether to
continue the current action or initiate a new action
occur at the unit task level. As Q expresses the
basic outcome measure on a temporal scale that
human operators can meaningfully interact with,
it is action oriented and has the prerequisites for
providing excellent control feedback.

Limitations and Applications

Alas, by basing the usefulness of feedback on
its uses and users, our functional framework offers
no simple recipes for the design of optimal control
feedback. Clearly, designing feedback requires
more than just finding the right grain size of infor-
mation aggregation. Although we presented our
study as a dichotomy between outcome and con-
trol feedback and showed that a local score pro-
vides better control feedback for Tardast than a
global score, we do not suggest that Q is the only
or even an optimal feedback score. Rather, Q and
TWAS are extremes on a continuum that allows
for many alternative designs (e.g., intermediate
summary scores that average over time while pri-
oritizing recent states or combinations and inte-
grations of multiple scores). Which functions are
best served by each alternative is a question that
goes beyond our present study.

Nonetheless, we trust that our functional view
of performance feedback will enable better theo-
ries and better designs. From a theoretical view-
point, a more systematic exploration of the ways
in which the factors of feedback scope, frequency,
and update lag serve various functions will al-
low researchers to develop better theories about 
how different feedback designs mediate human-
technology interactions. For practical purposes,
our functional view promises better engineered
solutions. Although we cannot provide simple
recipes, we will have succeeded if we convey that
feedback needs to be designed with the same care
as other aspects of complex interactive systems.
Any design has to be evaluated with respect to its
intended task and domain, but whenever humans
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are in the control loop, matching feedback signals
to human operator characteristics is essential.

Conclusion

Tardast is a flexible tool for investigating hu-
man multitasking, complex system management,
and supervisory control. We went beyond the sys-
tem inventors’ report (Shakeri & Funk, 2007) to
explore the influence of local versus global feed-
back on human performance. However, the im-
plications of our analyses extend beyond the
microcosm of Tardast. Instances of stable subop-
timal performance (Fu & Gray, 2004) do not auto-
matically reflect human capacity limits but may
also result from data limits (Norman & Bobrow,
1975) that can be alleviated by better design. Our
demonstration that perfect outcome feedback can
provide inadequate control feedback highlights
the importance of feedback design when one tries
to push human performance toward the limits of
bounded cognition (Simon, 1992).

The cognitive engineering goal of predicting
human performance in controlling dynamic multi-
tasking systems sometimes seems to recede as the
complexity of our systems increases. However,
the alternative is more theory, not more empirical
trial and error. Understanding how system charac-
teristics and feedback characteristics combine to
influence human performance cannot be achieved
in isolation; rather, the process of understanding
how these factors influence human performance
must be mediated by an understanding of the con-
trol of the human operator’s integrated cognitive
system.
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