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When participants allocated time across 2 tasks (in which they generated as many words as possible from
a fixed set of letters), they made frequent switches. This allowed them to allocate more time to the more
productive task (i.e., the set of letters from which more words could be generated) even though times
between the last word and the switch decision (“giving-up times”) were higher in the less productive task.
These findings were reliable across 2 experiments using Scrabble tasks and 1 experiment using
word-search puzzles. Switch decisions appeared relatively unaffected by the ease of the competing task
or by explicit information about tasks’ potential gain. The authors propose that switch decisions reflected
a dual orientation to the experimental tasks. First, there was a sensitivity to continuous rate of return—an
information-foraging orientation that produced a tendency to switch in keeping with R. F. Green’s (1984)
rule and a tendency to stay longer in more rewarding tasks. Second, there was a tendency to switch tasks
after subgoal completion. A model combining these tendencies predicted all the reliable effects in the
experimental data.
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A fundamental problem for the human information-processing
system is which task to work on when. In the laboratory, especially
in the problem-solving laboratory, this dilemma is typically re-
moved from the participant by design and instruction. However, in
everyday life, people typically have several active, independent
goals and need to schedule their activities so as to allocate limited
time adaptively across these goals.

Especially in today’s high-pressure, high-information work en-
vironments, time management and multitasking have become im-
portant practical concerns. When workers have some discretion
over what they do when, how might they schedule their activities,
and how should they? If they are already working on one task, why
might they give it up to work on another, only later to return to the
first? For example, we suspect that many readers of this article
have begun to write, but have not yet completed, more than one
research report. Why did they begin the second before finishing the
first? How do they decide when to work on which, when to pause
writing one so as to work on another, and so on?

Experimental cognitive psychology does not have a great deal to
say about these questions. In the experimental study of human
performance, participants are only rarely given more than one task
at a time or any discretion concerning which tasks to do when.
Nevertheless, cognitive psychology has investigated some impor-
tant and fundamental limitations in people’s capacity to multitask
and to swap between tasks.

Classic work on divided attention in the dual-task paradigm
(Styles, 1997) can, according to some theoretical treatments, be

considered a matter of time sharing across tasks, with mental
resources being allocated to one or another task in turn. However,
such time sharing is at a very different level, in terms of timescale,
than the kind of task scheduling that is our concern in this article.

More closely related is the popular recent experimental para-
digm of task switching, in which performance is measured when
people swap between two tasks or perform the same task repeat-
edly. In a typical experiment in this paradigm, participants can
respond to the same stimulus in one of two ways depending on the
current task set. Which task participants perform when is usually
imposed by instruction, signaled perceptually, or both. For exam-
ple, in the alternating runs paradigm (Rogers & Monsell, 1995),
participants perform one task for two trials, then the second task
for the next two trials, and so on. The fundamental finding is that
there is a switch cost. For example, in the alternating runs para-
digm, the first trial of each pair is performed slower than the
second. Since Allport, Styles, and Hsieh (1994), a large literature
has grown around this topic. Theoretical interest has focused on
the reasons for a switch cost and the extent to which it reflects the
operation of a unified central executive (Baddeley & Hitch, 1974).

Recent work by Arrington and Logan (2004) has moved one
small step closer to our concerns by incorporating a voluntary
aspect to the task switch. Participants were asked to make either
magnitude (greater than or less than 5) or parity (odd or even)
judgments to digits. Unlike previous task-switching studies, par-
ticipants were allowed to choose which judgment to make of each
stimulus, with instructions to balance the number overall and to
produce a random order of judgments. As with the previous
literature, task alternations were found to be slower than task
repetitions, and this switch cost was higher at shorter response-to-
stimulus intervals. Participants’ reasons for switching were pre-
sumably unrelated to task performance, instead being determined
by the desire to balance tasks and to randomize order.
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In summary, although this literature uses the name task switch-
ing, the nature of the task demands and the central theoretical
questions are very distinct from the focus of this article, which is
the voluntary, discretionary interleaving between independent
tasks. Indeed, from our perspective, the basic finding in this
literature, that task switching incurs a cognitive cost, makes mys-
terious our informal observation about everyday work, that people
choose to interleave their activities. Why do people interleave
activities if every switch back and forth is slowing their task
performance?

Applied work on multitasking has begun to address some of
these issues. For example, a series of studies by Hockey and
colleagues (Hockey, Wastell, & Sauer, 1998; Sauer, Wastell,
Hockey, & Earle, 2003) investigated how people allocated effort
across a set of tasks in simulated office or process control settings.
In such studies, the tasks were of different priorities (for one
obvious example, consider driving, in which the task of safely
reaching the destination is paramount and tasks such as tuning the
radio are clearly secondary; Cnossen, Meijman, & Rothengatter,
2004). Interest has focused on how operators reflect this priority
structure when adapting to task demands, such as fatigue or in-
creased workload, with the main finding being that operators are
able to successfully reallocate effort so as to preferentially pre-
serve performance on the higher priority tasks.

Of course, there are many extracognitive environmental pres-
sures that motivate switching between tasks in everyday life. Some
interruptions demand immediate action. Some tasks take so long
that they simply must be interleaved with other tasks that operate
on different timescales. Nevertheless, our intuition is that people
often choose to interleave activities when it is not strictly neces-
sary, and it is this discretionary task switching that this article
begins to investigate.

Some detailed studies of work activities in situ support our
intuitions. González and Mark (2005) studied multitasking in an
office environment. They discovered a great deal of switching
between working spheres, much of it necessitated by external
interruptions, but also a large number, as many as half of the
switches, due to self-interruption or discretionary switching. In
both cases, the workers were observed to prefer switching at
natural transitions, just after an action or subtask was completed.

One can understand the prevalence of sphere switches immedi-
ately after subtask completions by reference to the literature on
imposed interruptions. A considerable body of experimental evi-
dence has shown that interruptions have performance costs on
resumed tasks (e.g., Hodgetts & Jones, 2006) but are less costly if
they take place during subtask boundaries (Adamczyk & Bailey,
2004; McFarlane & Latorella, 2002). Thus, choosing to switch
immediately on subtask completion is adaptive in terms of mini-
mizing cost. However, paradoxically, if subtask completion were
the only driver of switching behavior, it would, in some situations,
lead to maladaptive time allocation because there would be a
higher tendency to switch out of tasks with many subgoal suc-
cesses.

Our basic experimental paradigm was straightforward. Partici-
pants were given a fixed amount of time to work on two tasks of
equal priority that contributed independently and entirely addi-
tively to the overall goal. The first question we asked was simple—
would people choose to switch between tasks in a situation like

this? If so, what would be the characteristics and causes of switch-
ing behavior?

There is some similarity between this paradigm and the six-
element test introduced by Shallice and Burgess (1991). In their
test, participants were given six open-ended tasks to work on in a
fixed period of time (15 min in the original version, with some
constraints on which transitions were allowed). However, despite
apparent similarities, interest in the six-element task and its deriv-
atives has focused on very different issues to those of concern in
this article; in particular, it has addressed frontal lobe involvement
in abstract planning processes (e.g., Burgess, Alderman, Emslie,
Evans, & Wilson, 1998) and the modeling of high-level planning
processes in terms of a supervisory attentional system (SAS;
Cooper & Shallice, 2000; Norman & Shallice, 1986). As far as we
are aware, there has not been any emphasis on the details of the
strategies that healthy participants use to solve the scheduling
problem over and above the abstract characterization of general
processes. For example, granted that people multitask by setting up
and/or responding to environmental or psychological triggers (as
proposed by SAS), exactly what triggers are attended to so as to
switch from one task to another?

In the absence of any prior cognitive theories of discretionary
task switching, we look to the animal literature for some theoret-
ical guidance. In particular, we follow Pirolli and Card (1999),
who, like others (e.g., Sandstrom, 1994; Smith, Gilchrist, & Hood,
2005), have extended optimal foraging theory to human activities
by comparing human behavioral solutions with solutions that
optimize the rate of information gain, analogous with the way
optimal foraging theory understands animal foraging by compar-
ison with solutions that optimize rate of energy gain. In support of
this general orientation, adaptive allocation of effort to information
sources has recently been shown in the literature on study-time
allocation (Metcalfe, 2002) as well as in online browsing of
expository texts (Reader & Payne, in press).

Optimal foraging theory is essentially an economic approach to
foraging behavior. Animals are assumed to inhabit a patchy envi-
ronment in which the energy gains in patches must be weighed
against the costs of moving between and within patches (including
obvious costs like the energy expended in locomotion and other
tacit costs such as the risk of predation).

A major class of models, centered on Charnov’s (1976) mar-
ginal value theorem, considers the conditions under which an
animal should leave one patch (e.g., a tree of berries) to travel to
another. The marginal value theorem itself states that the optimum
solution to this problem is to leave a patch when the marginal rate
of gain of energy is equal to the average rate of gain. However, this
solution is not best viewed as a theory of what the animal actually
computes, even if it achieves this solution. Going beyond analyses
of what is optimal, researchers have considered the heuristics that
animals might use to approximate this optimal solution in deciding
to leave a patch. Most of this work has been concerned with visits
to patches in sequence, rather than in alternation; with patches that
are randomly encountered; and with known reward functions.
Nevertheless, at an abstract level, the models offer plausible pos-
sibilities as descriptions of temporary deferral as well as of aban-
donment and can certainly be applied to patches whose reward
function is unknown. Of course, whether they are accurate models
in this circumstance is an entirely empirical question.
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Stephens and Krebs (1986) described four types of heuristic that
might underlie patch-leaving decisions or, more accurately, per-
haps, four variables that the decision may rely on: time in patch,
number of prey items encountered, giving-up time (time since last
encounter of an item), and rate of encounter of items. The simplest
heuristic would be to leave a patch after a certain period of time or
after a certain number of encounters. It is easy to see, informally,
that how well these simple rules perform depends on characteris-
tics of the patches in question. For example, if some patches
contain no prey items at all, then the number-of-items rule could be
disastrous; even if this is not true, the rule will lead to richer
patches being abandoned more quickly; if patches are very vari-
able in the number of items they contain, then either rule is likely
to be grossly inefficient.

A somewhat more sophisticated rule relies on the idea of
giving-up time. Giving-up time is the time between the last en-
counter of a prey item and the decision to leave the patch. The
assumption here is that an animal sets a kind of patience threshold
of acceptable duration between rewards and leaves once this is
exceeded. A giving-up-time rule performs well when the number
of prey items per patch varies considerably (Iwasa, Higashi, &
Yamamura, 1981).

More sophisticated again (at least in terms of its assumptions
about what the animal computes) is a rule based on rate of
encounter. One suggestion for how animals may be sensitive to
rate of return across an entire visit to a patch is to assume that they
track an estimate of the potential of a patch. If this estimate
increases by a fixed amount with each encounter but drops by a
fixed amount per unit time (as in the fixed-time rule), then the
potential will drop below threshold according to the rate of return
across the visit. This mechanism was called Green’s assessment
rule by Stephens and Krebs (1986, p. 174; Green, 1984) and fits
with an analogy presented by Green (1984) of a clockwork toy that
winds down over time but is wound up a little on every encoun-
tered item (Green’s main presentation of the rule relied on dy-
namic programming to achieve a guessed rate, assuming it is the
best possible). Similar mechanisms were proposed in earlier arti-
cles by McNamara (1982) and Waage (1979; based on empirical
data from a parasitic wasp). Green’s rule is explicitly targeted on
patches where the reward function is not known. If one makes
switch decisions according to Green’s rule, then completing a
subtask will always postpone a switch decision rather than encour-
age it. Yet Green’s rule would lead to overall adaptive time
allocation in the case of patches of variable richness, because it
leads to longer visits to richer patches.

To understand the behavior of any such rule in detail requires it
to be parameterized (e.g., to know over what time period the rate
is computed). Nevertheless it is clear that the two more complex
rules (based on leaving time and rate), unlike the two simplest, will
lead to an animal staying longer in richer patches.

The language of patches, encounters, and prey items should not
obscure the possibility of applying these general models to discre-
tionary task switching by humans. In our experimental tasks, for
example, participants tried to generate or find words. The analogy
we draw is between tasks and patches and between the discovery
of words and the encountering of prey items. A time-based leaving
rule would see participants allocate roughly equal time to tasks
independently of their success at word generation. An item-based
rule would see them persist with each task for however long it

takes to generate roughly the same number of words. A rule based
on a giving-up-time threshold or on a rate-of-return threshold
would appear to be more adaptive, in that it would lead to partic-
ipants spending greater amounts of time on tasks that produce
more frequent rewards.

Analogous issues about choice rules used by animals have
arisen in the literature on operant conditioning and especially in
work on the phenomenon of matching. In a classic matching
experiment, an animal is free to respond at two different levers,
each programmed with a different reward schedule. Over time, the
ratio of response to reward at the two levers is observed to be
approximately equal, which empirical regularity is called match-
ing. There are several theories of how and why matching is
achieved (for a review, see Miller & Grace, 2003). Depending on
the particular reinforcement schedules, it is sometimes, but not
always, the case that matching results from optimal response
allocation (e.g., Herrnstein & Heyman, 1979). In such cases, one
proposed mechanism of how matching could be achieved is me-
lioration, in which the animal is assumed to respond to whichever
lever has the currently higher level of local reward. With the
schedules typically used, this heuristic requires fairly frequent
switching of activity between levers. Because melioration is
closely related to hill climbing, which is a well-established strategy
in human problem solving (Newell & Simon, 1972), this analysis
suggests a rather obvious link between these operant experiments
and our experiments, which is explored once the basics of our
experimental set-up have been described.

To investigate whether humans use heuristics of this sort to
make task-switching decisions, we needed an experimental situa-
tion in which participants were given a set of independent tasks,
each of which contributed to their overall performance, and could
switch freely between tasks, choosing when to work on each task.

The work on foraging theory shows that which rules of thumb
are most successful depends critically on the nature of the patches
and in particular on the distribution of rewards (Stephens & Krebs,
1986). Particularly important is the expected gain curve—the
distribution of rewards over time on a task. In the operant litera-
ture, these gain curves are determined by ratio or interval sched-
ules, and the patches are nondepleting, but intuitively these do not
seem typical characteristics of human tasks or activities. In gen-
eral, we imagine that human tasks might have a variety of gain
curves (where gain is measured in terms of objective returns or
subjective ones like satisfaction) and that the shape of these curves
might be an interesting way of classifying tasks and understanding
aspects of behavior, including task switching. However, for our
explorations of this topic, we decided to focus on tasks with a gain
curve that we believe to be typical of a great number of human
activities that are extended in time (and indeed to many foraging
situations), namely, a monotonic pattern of diminishing returns, in
which the gain increases with time on task, but gain per unit time
drops gradually until eventually the task is effectively depleted (as
an everyday example, consider revising a manuscript).

In summary, we have briefly reviewed a large number of dis-
parate literatures that have some relevance to our concern. Despite
superficial similarities, we have argued that the human experimen-
tal literatures on task switching and executive control are only
weakly related to our goals. To understand whether and how
people interleave activities, we have combined ideas from two
fields. From foraging theory, we take the perspective that switch
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decisions may be determined by characteristics of activities in
terms of the occurrence of successes over the period of an activity.
From applied work on multitasking, we take the perspective that
agents may seek to minimize switch costs by managing transitions
according to subtask boundaries. These perspectives make differ-
ent predictions: The foraging rules (with the exception of the
fixed-item rule) suggest that giving-up decisions will tend to be
remote from task completions, whereas the cost-management per-
spective suggests the opposite. We explored these issues within a
simple experimental context: This allowed us to uncover new
empirical regularities concerning the effectiveness of overall pat-
terns of time allocation across tasks as well as fine-grained tem-
poral measures concerning task-switch decisions.

Experiment 1

Experiment 1 examined baseline performance on two of the
Scrabble tasks that were later to be used to study time allocation
between tasks. (Our participants’ task was a degenerate version of
the well-known game Scrabble, in which their goal was to make as
many words as possible from a set of letters.)

There were several criteria determining the choice of task. First,
there should be a ready index of performance or gain available to
experimenters and also to participants (so that choices to switch
task could be considered in terms of overall and moment-by-
moment performance). Second, cumulative performance indices
should increase continuously and monotonically with time spent
on task. Standard experimental problems with a single goal, such
as the tower of Hanoi, were inappropriate for this reason. In
addition to requiring a task in which measures of performance
increased over time, we preferred a task in which this function was
one of diminishing returns, so that gain per unit time decreased.

It was important that switching between tasks could in principle
be entirely discretionary and not logically necessary for perfor-
mance, so that there should be no dependency relations among the
set of tasks. Furthermore, it was essential that there should be a
valid indication of which task was being worked on when. The
Scrabble task (making words from a set of letters) had the advan-
tage of being very dependent on a visual stimulus (the array of
letters), making it at least very likely that participants would
choose to display the set of letters before and during their attempts
to generate words from that set (contrast this with, e.g., a category
fluency task of Maylor, Chater, & Jones, 2001—in which case
participants may have generated exemplars from a noncurrent
category before indicating their switch).

Method

Participants. Participants were 50 undergraduates of Cardiff
University, Cardiff, Wales, 16 male, 34 female, ages from 18 to 23
years old, who took part for course credit.

Design. Each participant was assigned to one of two Scrabble
tasks, defined by the set of seven letters from which the partici-
pants were instructed to generate as many words (of at least two
letters in length) as possible.

Materials. The two sets of seven letters from which partici-
pants were required to make words were taken from Maglio,
Matlock, Raphaely, Chernicky, and Kirsh (1999). These authors
presented randomly generated sets of seven letters to participants

for 5 min and required them to construct as many words as
possible by rearranging subsets of the letters. Maglio et al. reported
that the highest mean number of words generated was 26.1 for the
set LNAOIET, so this set was used for the easy task. The lowest
mean number of words generated was 12.1 for the set ESIFLCE,
and so this was used for the hard task. We further checked the
potential yield of the sets of letters, using a program called scrab-
ble buddy (http://boulter.com/scrabble/). Scrabble buddy generated
154 words for the easy set and 64 for the hard, but this included
proper nouns and acronyms, and furthermore, not all of these
words were recognized by us. We presented each set of words to
a single student participant and asked him to check which words he
recognized of those that met our constraints. This process yielded
53 words from the easy set and 23 from the hard set. We regard
these figures as good estimates of theoretical maximum perfor-
mance at each task.

A program was written in MS Visual Basic 6.0 to present
appropriate letter sequence and record participants’ performance.
Below the letters was an entry box that displayed the letters of a
word as they were typed by the participant and a button labeled
Enter. In the top left of the screen was a button labeled Start, and
beneath this was a timer box that displayed the number of seconds
remaining to generate words. Each time the Enter button was
clicked on using the mouse, the program recorded the contents of
the entry box and time-stamped the event.

Procedure. Participants were instructed to generate words us-
ing the letters provided. Participants were informed that words did not
have to use all the letters but had to be between two and seven letters
in length and that proper nouns or acronyms were not allowed.

After participants clicked on the Start button, a clock displayed
the number of seconds remaining and began to count down to zero.
Participants could type words into the entry box using the key-
board. After each word had been typed, participants were required
to click on the Enter button; this cleared the entry box in prepa-
ration for the next response. After 600 s had elapsed, the experi-
ment was automatically terminated. The program did not provide
any feedback about any errors in the words entered.

Results and Discussion

Words generated by participants were counted by hand. Any
answers that used the letters provided and were listed on dictio-
nary.com were counted as words. In practice, this was uncontro-
versial (i.e., there were no very rare actual words that people
produced). Occasionally, participants would erroneously use a
letter that occurred only once in the set of letters more than once
in a word, and such answers were of course discounted. Words
were also occasionally repeated, and only first occurrences were
counted in the totals.

On the easy task, participants generated on average 29.77 (SD �
8.10) words and, on the hard task, 14.55 (SD � 5.10) words. The
cumulative word-generation graphs over time showed a classical
diminishing returns shape (see Figure 1). After 5 min, participants
doing the easy task had generated on average 21.0 words, and
participants doing the hard task had generated 11.3 words. Using
the average data shown in Figure 1, we can estimate the optimal
time allocation across the tasks given an overall budget of 10 min.
Figure 2 shows that the optimal overall time allocation is to spend
approximately 25% of time on the hard task.
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It is interesting to examine how this empirical analysis relates to
the matching hypothesis. Spending 2.5 min on the hard task led to
an overall rate of return on that task of 3.51 items per minute and
an overall rate of return of 3.49 items per minute for 7.5 min on the
easier task for the averaged data. Thus, optimal performance
approximated the matching principle. One simple mathematical
model for approximately fitting the diminishing returns curves of
Figure 1 is the exponential function; Figure 1 shows two such
functions. Dividing the 10 min into 100 units (U) of 6 s, the
functions we used (and that are displayed as “model” in Figure 1)
were hard task: words per unit � .51 � .965U�1; easy task: words
per unit � .65 � .981U�1.

Experiment 2

Having quantitatively characterized serial performance on two
Scrabble tasks of varying difficulty, we investigated performance
when the two tasks could be interleaved. Although we were
primarily interested in a condition where each participant could
allocate a single budget of time freely between two tasks, we also
considered a condition in which participants could switch between
tasks at will but only until they had used a fixed budget of time (5
min) for each task. This comparison between interleave-free and
interleave-equal conditions allowed us to investigate the hypoth-
esis that switching between tasks was a strategy for allocating time
preferentially. This hypothesis would be supported if participants
in the interleave-free condition elected to switch tasks more often
than those in the interleave-equal condition. We additionally con-
sidered conditions in which participants worked on one task then
the other, in either order. This serial condition allowed us to assess
the magnitude of switch costs (by comparison with the interleave-
equal condition).

Method

Participants. Participants were 72 undergraduate students (14
male, 58 female) from Cardiff University. Their ages ranged from
18 to 39 years old. The participants were each paid £31 or given
course credit in exchange for completing the experiment.

Design. The freedom that participants had to allocate their
time between the two tasks was manipulated between participants.
Participants were either allowed to switch freely between the two
tasks or required to complete each task sequentially in a serial
fashion (the serial condition constituted a within-subjects replica-
tion, for 5 min only, of Experiment 1 and allowed direct compar-
isons of performance). The total time spent on the two tasks either
had to be divided equally between the tasks or was determined by
the participant (equal or free). The combination of these variables
produced three conditions, labeled interleave-equal, interleave-
free, and serial-equal.

Each participant received the same easy and hard tasks used in
Experiment 1. Overall performance was measured in terms of the
total number of distinct words generated, and participants were
informed of this criterion. The time of entry of every word and the
time whenever a participant switched tasks were recorded.

Materials. As before, a program was written in MS Visual
Basic 6.0 to present the two letter sequences and record partici-
pants’ performance on both tasks. Two buttons labeled Sequence 1
and Sequence 2 were horizontally aligned toward the top of the
screen. Otherwise, the screen components and their position were
as in Experiment 1. In the interleave-equal condition, there were
two clocks adjacent to the selection buttons for each task; each
displayed the seconds remaining for that task. In the serial-equal
condition, a single larger button labeled Sequence replaced the two
buttons labeled Sequence 1 and Sequence 2. These were the only
differences among the interfaces for the three conditions.

Each time either of the Sequence buttons or the Enter button was
clicked on using the mouse, the program recorded the contents of
the entry box and the selected task and time-stamped the event.

Procedure. Participants were instructed to generate words from
the letters provided, as in Experiment 1. In the interleave conditions,
participants were informed that they could switch between the two

1 At the time these experiments were performed, the UK/US conversion
rate was £1 � $1.6 � 1.54 Euros.
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letter sets as much or as little as they wanted but that their aim should
be to maximize the total number of words generated.

After participants clicked on the Start button, the clock or clocks
displayed the number of seconds remaining and began to count
down to zero. When participants clicked on a Sequence button, the
corresponding sequence was displayed thereafter in the box above
the entry box, and participants could then type words into the entry
box using the keyboard. After each word had been typed, they
were required to click on the Enter button; this cleared the entry
box in preparation for the next response. In the interleave condi-
tions, participants could change the sequence displayed at any time
by clicking on the corresponding Sequence button. After 600 s had
elapsed, the experiment was terminated.

In the serial-equal condition, the clock displayed 300 s at the
start of a task, and when this time had elapsed, the whole proce-
dure was repeated immediately for the other letter sequence. In the
interleave-equal condition, both clocks initially displayed 300 s.
The clock on the left side of the screen corresponded to the
Sequence button on the left side of the screen, and vice versa. Each
clock remained static until the related sequence was selected, and
then it began to count down. Once either of the Sequence buttons
had been clicked on for the first time, one or the other of the
sequences was always selected. This meant that a clock was
always counting down from that point onward. When either clock
reached zero, both the corresponding Sequence button and the
entry box were disabled. Clicking on the button for the uncom-
pleted sequence reactivated the entry box and the corresponding
clock. In the interleave-free condition, the single clock simply
displayed 600 s at the start of the experiment.

Presentation of the sequences was counterbalanced so that they
appeared an equal number of times both on the left or right of the
screen in the interleave conditions and first or second in the
serial-equal condition. The program did not provide any feedback
about any errors in the words entered.

Results

Correct responses were identified and counted as before. However,
all attempts, whether correct or incorrect, were treated as items in the
timing data (6% of responses were categorized as incorrect).

First, consider the number of words produced in the three main
conditions (pooling over the counterbalancing of order in the
design). Table 1 shows that, as expected, participants in all three
groups generated considerably more words from the easy letter set.
A 3 � 2 (Condition � Easier/Harder Task) mixed analysis of
variance (ANOVA) revealed a significant main effect of this
difference, F(1, 69) � 363.00, MSE � 14.78, p � .001, �p

2 � .84.
However, neither the difference in the number of words generated
across conditions nor the Task Difficulty � Condition interaction
was significant (Fs � 3).

It is somewhat surprising that the interleave-free group did not
manage to generate more words from the easy sequence, as 23 of
24 participants spent longer on the easy sequence, (binomial test
p � .001; ANOVA was inappropriate for the time-allocation data
because time on one task was a residual of time on the other). On
average, interleave-free participants spent 59% of their time on the
easy sequence and generated 73% of their words from this se-
quence. Thus, although participants were successfully managing to
devote more time to the easier task, they were undermatching, in
that they were spending more time on the hard sequence and
(according to the data from Experiment 1) less time on this task
than would be optimal.

Participants in the interleave-free condition switched tasks on
average nearly seven times in 10 min. One of the reasons for this
appeared to be to allocate time preferentially, as participants in the
interleave-equal condition switched significantly fewer times,
t(46) � 2.11, p � .05, �p

2 � .09. However, the interleave-equal
participants still showed a substantial tendency to switch.

We now look in detail at the timing protocols to test for the
various heuristics that may have driven giving-up decisions. We
use the term visit to denote a period of working on one of the tasks;
each visit ended when the participant switched to the other task.
Giving-up times (time between a click on Enter and a click on the
noncurrent Sequence button) and longest between-item times (the
longest times between two consecutive words [Enter presses] on
each visit, averaged over visits then participants) are displayed in
Figure 3. Data from one participant in the interleave-free condition
and two participants in the interleave-equal condition were ex-
cluded from Figure 3 and subsequent analyses as they made only
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one switch during the experiment. For the remaining data, means
were taken for each participant, ignoring the last visit (which was
ended by the timer rather than by the participant’s active choice)
and visits in which no items were generated, and then averaged
across participants. Analyses were done separately for the
interleave-free and interleave-equal groups, as we were primarily
interested in the decision behavior of the interleave-free group.

Figure 3 shows that giving-up times were longer in the hard
task. For the interleave-free condition, this difference was signif-
icant, t(22) � 2.69, p � .05, �p

2 � .25. This trend was replicated
in the interleave-equal condition but was not significant, t(21) �
1.61, �p

2 � .11.
Figure 3 also shows that across all participants across both tasks,

the average longest between-item time was greater than the aver-
age giving-up time in both the interleave-free condition, t(22) �
4.86, p � .001, �p

2 � .52, and the interleave-equal condition,
t(21) � 3.10, p � .01, �p

2 � .31.

The mere fact that participants spent reliably more time on the
easy task rules out the two simplest giving-up rules, those based on
time or on number of items generated. The time rule predicts no
reliable difference between the tasks, whereas the number rule
predicts that participants would spend more time on the more
difficult task.

A simple giving-up-time rule would predict the observed tendency
to spend longer on the easier task. However, such a rule could
obviously not explain the reliable difference in giving-up times be-
tween tasks. Furthermore, as noted above, we discovered that longest
between-item times tended to be longer than giving-up times.

Is it possible that participants were using a rate-based leaving
heuristic like Green’s assessment rule (Green, 1984)? Green’s rule
appropriately predicts longer overall times on easier tasks. Less
obviously, it also predicts longer giving-up times in the harder task
than in the easier task. This was an unexpected but reliable aspect
of the data.
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Table 1
Experiment 2: Summary Data

Dependent measure

Interleave-free Interleave-equal Serial-equal

M SD M SD M SD

Words generated
Hard 7.46 2.50 10.04 3.04 9.63 3.28
Easy 20.33 6.79 20.21 5.45 23.21 6.64

Time spent on task (s)a

Hard 243.64 41.10 300.00 0.00 300.00 0.00
Easy 356.36 41.10 300.00 0.00 300.00 0.00

Rate of return (words/min)
Hard 1.88 0.69 2.01 0.61 1.93 0.66
Easy 3.43 1.07 4.04 1.09 4.64 1.33

Number of switches 6.75 2.71 5.29 2.03

a For interleave-equal and serial-equal conditions, time spent on task was enforced.
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Consequently, Green’s rule apparently simultaneously predicts
two reliable effects that appear to work against each other—longer
visits to the easy task but shorter giving-up times for this task.
Before modeling these two effects quantitatively, we attempt to
explain why Green’s rule predicts the effects.

According to Green’s rule, the length of a visit is determined by
the equation V � T � IG, where V is visit time, T and G are free
parameters, and I is the number of items generated during the visit.
T can be considered as the minimum visit time, that is, the time if
no items are generated; G is the gain in visit time for each item
generated. This equation straightforwardly predicts longer visit
times to the easier task because more items were generated on this
task.

The prediction for giving-up times is harder to intuit. Although
Green’s rule leads to longer visits to easier patches, it also leads to
patch visits with higher rates of return when the patch is richer—
that is, it does not lead to an increase in visit times that is sufficient
to equalize rate of return. The rate of return during a patch visit is
I/(T � IG) and thus increases with I. As a consequence, we can see
that Green’s rule tends to produce smaller giving-up times in richer
patches. In richer patches, the visits are longer, but items occur
more densely within that time period. Therefore, the chances of an
item occurring shortly before the leave decision (producing a short
giving-up time) are increased. Shorter giving-up times in richer
patches (easier tasks) thus occur as a probabilistic effect.

This argument is validated by the quantitative model we are
about to describe. However, before we describe the model, we
want to anticipate the conclusions of the modeling enterprise: We
discovered that it is possible to fit the qualitative main effects on
visit time and giving-up time with Green’s rule, but not the size of
the effects. It has proved impossible within the constraints of our
model to reproduce the size of the difference in giving-up times at
the same time as size of the preference for the easy task.

The model generated a run through the experimental task. The
600-s experimental time was divided into 100 units of 6 s.2 Within
each unit of time, an item was generated with a probability
according to the functions we fit to the participant data in Exper-
iment 1. Thus, initial probabilities of generating a word in a 6-s
window were .65 for the easy task and .51 for the hard task. These
probabilities were multiplied by .981 (easy) and .965 (hard) in
each time increment.

Also, in each unit of time, a decision was made about whether
or not to switch task, using Green’s rule—which we implemented
so as to model the graphical description in Stephens and Krebs
(1986, p. 175) and describe, following them, using the idea of a
patch having a potential that decreases over time and increases
when items are found. As soon as a task was begun (either at the
start of the experiment or after a switch), the potential of the patch
(the time that would be spent there if no items were found) was set
to T (the minimum time parameter, as above). In each unit of time,
the potential was reduced by 6 s. If an item was generated, the
potential was increased by G s. When the potential reached zero,
the task was switched.

A single run of the model, with the same parameter values,
would produce variable time profiles because of the probabilistic
implementation of item generation. Thus, we tested the model by
setting the two parameters and then running the model 200 times
and using the resulting statistics.

At the start of a run of the model, one of the two tasks was
randomly chosen as the active task. The first unit of time was then
executed using the active task to determine the probability of
generation following the principles above. After the decision to
switch task or not had been made, the second iteration was then
carried out in much the same way. When a decision to switch was
made, the active task was changed for the next unit of time.
Generation was postponed within an inactive task so that the
generation rate of the active task reflected the number of iterations
completed within that task rather than the sum of both tasks. A run
was complete when all 100 iterations had been carried out.

Following Roberts and Pashler (2000) and Roberts and Stern-
berg (1993), we tested the predictions of this model for time on
easy task, number of switches, and giving-up times across a range
of plausible values of G and T, according to our judgment. (The
participant data for all variables were within the model’s predic-
tions, but these predictions were rather wide in the case of time on
easy task and number of switches; a report of this phase of model
testing is available from us upon request.)

To provide a more stringent test of the model’s ability to
account for the data, we fixed the number of switches using the
participants’ average data and varied the range of parameters to see
if the model could simultaneously fit the two remaining dependent
variables of primary interest: the proportion of time on the easy
task and the difference between giving-up times on the hard and
easy tasks. In effect, this tested whether the model could simulta-
neously predict the quantitative values of four dependent variables:
number of switches, time on easy task, giving-up time on easy
task, and giving-up time on hard task (these last two reduced to a
single difference measure).

To try to achieve the best possible fit, a fine-grained exploration
of parameter values in the neighboring range was required. G
values increased from 3 s in 3-s units. Then, T values were varied
in 6-s units so as to find combinations of parameters that fitted the
number of switches to 7 � 1.01 (the participant mean and 95%
confidence interval) and did not generate more than 5% highly
discrepant runs of zero or one switch. These best fitting points are
shown in Figure 4. Also included are the mean participant data
from Experiment 2; around all data points, a 95% confidence
interval has been plotted using the variance from Experiment 2.
Figure 4 indicates that the model can only account for about half
the area within a 95% confidence interval around the mean from
Experiment 2. It seems that Green’s rule, although it can offer a
plausible account of the qualitative patterns in the data, cannot fit
the quantitative aspects of all our dependent variables simulta-
neously.

Another prediction that arises from Green’s rule is that
giving-up time must never be less than G (assuming at least one
item is generated). Yet our exploration of the parameter space has
indicated that when there are seven switches, G must be at least 6 s
for the proportion of time spent on the easy task in the model to
approach the participant’s mean in Experiment 2 (i.e., 59%).
However, in Experiment 2, 26% (18/70) of the giving-up times
from the easy task and 16% (11/70) of the giving-up times from

2 Data from the interleaving-free condition indicated 6 s was approxi-
mately the shortest plausible time within which participants both generated
an item (typing and entering) and then switched to the other task.
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the hard task were below 6 s. This suggests that Green’s rule
cannot explain all of the participants’ decisions to switch task.

This issue is strongly aligned with our discussion in the intro-
ductory section, above, concerning task switches at subgoal
boundaries. We pointed out that in situ studies show that people
sometimes switch spheres of activity immediately on completing a
subgoal and that this is a good strategy for minimizing the costs of
self-interruption. Perhaps, in our experimental task, participants
sometimes adopted a subgoal orientation and chose to switch
immediately on finding a word. The data we have just described
support this contention.

Consequently, we explored a model in which switch decisions
have two independent bases. One, based on Green’s rule, arises
from treating word finding as an activity and monitoring the
changing gain curve of that activity. The second, based on subgoal
completion, treats the current search for a single word as a subgoal
and switches on its completion. To model the mixing of these two
strategies, we simply added one additional free parameter—the
probability of switching on subgoal completion (finding a word).
If this probability was low, then, even in longer visits, only a
proportion of all task switches would be due to the subgoal
strategy, the remainder being determined by Green’s rule. This
simple addition to Green’s rule is to some extent determined by the
data—it is a simple reflection of the observed minority of switches
that occur very shortly after a word finding. However, it is also
justifiable in terms of naturalistic observation, as noted above.

What does this model predict across its combinatorial parameter
range? The experimental participants switched on average seven
times and generated about 28 items. Thus, if the p-subgoal param-
eter was 0.25, it could account for all of the switches. We thus
varied p-subgoal from 0.025 (0 would be the vanilla Green’s rule

case, as above) to 0.125 (although the rapid-switch data suggest
that many fewer than half of the switches were immediate). In runs
of the model, the relation between the p-subgoal parameter and the
proportion of fast switches was not entirely straightforward; nev-
ertheless, this argument allowed us to set a plausible range for the
parameter.

The final decision was how to assign a time to immediate
switches within the constraints of our model. To prevent these
switches having an unrealistically short giving-up time of 0 s, we
introduced a lag so the switch occurred one unit of time (6 s) after
the item was generated.

When the same constraints on parameters and number of
switches were applied as for the Green’s rule simulations above,
the relation between giving-up times hard–easy and proportion of
time on easy task was as shown in Figure 5. Thus, the model
predicts that behavior should be limited to a particular area of the
plausible space of the dependent variables we are considering.
Furthermore, the participants’ data are within this space. Thus, the
model makes a genuine prediction that is supported by the data.
Moreover, although, for ease of visualization, we have considered
the difference in giving-up times hard–easy, the model in fact
predicts the appropriate absolute values for both these variables.

Finally, we come to the more conventional question about a
quantitative model—could it fit the participants’ data with judi-
cious selection of parameter values? The graph shows that it
can—the closest model point to the participant data in Figure 5 is
achieved with these parameter values: T � 30 s, G � 18 s, and
p-subgoal � 0.1.

There is one dependent variable that we have not considered so
far in our exploration of the quantitative models, namely, the
longest between-item times. With the above parameter values, the
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model generates longest between-item times that underestimate the
participants’ average data (we have not pursued this discrepancy:
Participants’ longest between-item times are essentially outliers in
their performance profiles and therefore, even when averaged, may
prove hard to fit with a model targeted on explaining average
performance). Thus, our quantitative model fits with the simulta-
neously observed values of four of six dependent variables (all
within the 95% confidence intervals of the means; for values, see
Appendix A).

Discussion

This experiment discovered several intriguing phenomena. First,
people in general appeared to be inclined to switch between tasks,
despite the evidence from comparisons with the serial-equal con-
dition that this had no overall benefit for performance. Part of the
reason for so doing was presumably to allocate time adaptively—
most of the participants spent more time on the easy task and by so
doing should have improved their total score relative to some
alternative schedules (e.g., all the time on one task). However,
according to the principle of matching, participants would have
further benefited by allocating even more of their time to the easier
task. The fact that participants in the interleave-equal condition
also switched between tasks, although at a reliably lower rate,
suggests that time allocation was not the only motivation for
switching.

The local determinants of giving-up decisions were not straight-
forward. The combination of three reliable effects is a challenge
for models of switch choice. People spent more time on the easy
task, but giving-up times were typically lower than the longest

between-item time in a task visit, and giving-up times were reli-
ably and substantially higher on the hard task.

In combination, these findings rule out the most straightforward
models of switching based on thresholds of time, items, giving-up
time, or rate of return. Green’s rule offered an attractive possibility
because it naturally explains the successful allocation of more time
to the richer task, as well as producing a difference in giving-up
times in the reported direction. However, our attempts at quanti-
tative modeling showed that it cannot simultaneously fit the size of
these effects.

We proposed a dual-process model, inspired by the observation
of a substantial minority of very fast giving-up times. According to
this model, Green’s rule is elaborated with a probabilistic compo-
nent that chooses to switch immediately on completing a subgoal
(generating a word). We modeled this component as a simple
independent probability of switching on subgoal completion. This
combined model captures the informal distinction made in the
introductory section, above, between stopping rules based on on-
going activity, monitoring a continuous measure of gain and using
this as the basis for any switch (as in foraging generally), and
orientation to a single subgoal, with stopping determined by sub-
goal completion (as in conventional human problem-solving
tasks). The model has only three free parameters. Varying these
combinatorially across their plausible range showed that the model
makes genuinely constrained predictions, and the participants’ data
supported these predictions. The model allowed good quantitative
fits of the primary dependent variables (participant means) as well
as providing an explanation for all important qualitative effects.
(Although it underestimates longest between-item times, it cor-
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rectly predicts that longest between-item times are longer than
giving-up times for the easy task—cf. Figure 3.)

Nevertheless, a quite different possibility that seems particularly
salient in the context of switching back and forth in a small set of
tasks (especially two tasks) is that switch decisions were based on
the characteristics of alternative tasks as well as the current task.
This is the fundamental assumption of models of hill climbing or
melioration (Herrnstein & Vaughan, 1980) in the operant condi-
tioning, matching literature.

Experiment 3

Experiment 2 was designed to test the hill-climbing heuristic, as
well as to test our dual-process model by replicating the important
reliable findings of Experiment 1 with regard to the switching
behavior of the interleave-free group. For Experiment 3, a third set
of letters was introduced, of intermediate difficulty. One group of
participants was presented with this set and the easy set from
Experiment 2, a second group of participants was presented with
the medium set and the hard set from Experiment 2. Both groups
were free to switch between tasks as they preferred, and our
interest focused on switching behavior and, in particular, on
whether decisions to switch from the medium task were influenced
by whether the alternative task was harder or easier.

Method

Participants. Forty Cardiff University undergraduate students
(15 male, 25 female) were each paid £3 in return for participating
in this experiment. Their ages ranged from 19 to 33 years old.

Design. All participants performed the tasks under the
interleave-free condition from Experiment 2. However, one of the
two tasks was varied between participants. Each participant carried
out the same task of medium difficulty. However, in conjunction
with this task, half the participants had to carry out an easy task
(the medium/easy group), and half the participants had to carry out
a hard task (the medium/hard group).

Materials. The easy and hard tasks used the same letter se-
quences as in Experiment 1. The letter sequence for the medium
difficulty task was also taken from Maglio et al. (1999). The
sequence NDRBEOE was chosen as the closest to midway be-

tween the easy and difficult tasks from their data (they reported a
mean of 19.88 words generated in 5 min). The words generated by
scrabble buddy for this sequence were filtered by our single
student participant, as for the easy and hard sets, and produced 35
words as a best estimate of maximum performance from this set of
letters.

Procedure. The total amount of time participants were given
to generate words was increased from 600 s to 840 s. This enabled
us to investigate switching behavior over a longer period of time,
with (presumably) more visits contributing to the mean data on
visit times, giving-up times, and so on. All other aspects of the
methodology were identical to the interleave-free condition in
Experiment 2.

Results

Table 2 shows the performance measures for the two groups,
divided by task/letter set. Participants generated more words in
their easier task rather than their harder task (4% of responses in
the medium/easy and 7% of responses in the medium/hard groups
were categorized as incorrect and only treated as items in the
timing data). A 2 � 2 mixed ANOVA (Group, Easy/Medium vs.
Easy/Hard � Task Difficulty, Easier or Harder) showed a main
effect of task difficulty, F(1, 38) � 54.97, MSE � 27.86, p � .001,
�p

2 � .59 (participants generated more words on their easier task),
and a main effect of group (participants who received the medium/
easy tasks generated more words in total than those who received
the medium/hard tasks), F(1, 38) � 10.80, MSE � 58.10, p � .01,
�p

2 � .22. However, the interaction between these two factors was
also reliable, F(1, 38) � 9.31, MSE � 27.86, p � .01, �p

2 � .20,
with the difference between tasks being higher in the medium/hard
group.

As in Experiment 2, participants in both groups allocated more
of their time to the easier task (overall, 28 out of 40 participants;
binomial test p � .05), but not to the extent that would be required
to match the cumulative rates of return. This effect is noticeably
smaller than in Experiment 2, perhaps unsurprisingly given that the
difference in difficulty between any participant’s pair of tasks had
been deliberately reduced.

Turning to the timing data for giving-up decisions, data from
two participants in the medium/easy group and one participant in

Table 2
Experiment 3: Summary Data

Dependent measure Task

Medium/easy

Task

Medium/hard

M SD M SD

Words generated Medium 20.95 7.25 Medium 24.10 5.96
Easy 26.10 8.71 Hard 11.75 2.84

Time spent on task (s) Medium 383.74 44.89 Medium 447.83 55.98
Easy 456.26 44.89 Hard 392.17 55.98

Rate of return (words/min) Medium 3.28 1.12 Medium 3.24 0.72
Easy 3.42 1.02 Hard 1.82 0.46

Mean duration of visit (s) Medium 112.88 71.36 Medium 125.08 76.22
Easy 148.24 111.00 Hard 103.64 59.24

Mean duration of very first visit (s) Medium 128.85 99.38 Medium 156.66 101.83
Easy 122.58 121.71 Hard 54.98 29.00

Mean duration of first visit to medium task having seen alternative task (s) 99.95 51.62 94.24 73.05
Number of switches 7.00 4.12 8.60 4.43
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the medium/hard group were excluded as they made only one
switch during the experiment. Figure 6 shows that, again as in
Experiment 2, giving-up times were shorter than the longest
between-item times. A 2 � 2 ANOVA treating the time measured
per visit as a within-subjects variable (Group � Time Type,
Longest vs. Giving-Up) found this main effect was reliable F(1,
35) � 36.72, MSE � 42.23, p � .001, �p

2 � .51. Additionally,
there was a main effect of group: Across both measures, the
medium/hard group took longer than the medium/easy group, F(1,
35) � 4.87, MSE � 170.90, p � .05, �p

2 � .12.
Because our patch-leaving hypotheses make stronger predic-

tions for giving-up times, these times were analyzed separately,
including easier/harder task as a within-subjects factor. There was
a main effect of this factor: Giving-up times were longer in
whichever was the more difficult task of the pair, F(1, 35) �
10.84, MSE � 183.92, p � .01, �p

2 � .24, as well as a main effect
of group, with giving-up times longer in the medium/hard group
than in the medium/easy group, F(1, 35) � 6.90, MSE � 211.26, p �
.05, �p

2 � .17. The Task Difficulty � Group interaction was also
significant, F(1, 35) � 4.43, MSE � 183.92, p � .05, �p

2 � .11.
Thus, all three of the most important findings from Experiment

2 were replicated: Participants spent longer in their easier task and
had longer giving-up times in their harder task. Giving-up times
were shorter than longest between-item times within a visit.

We now turn to the question of hill climbing, that is, the role of
the competing task on giving-up decisions. If decisions to leave a
task were influenced by the competing task, we would expect visits
to the medium task to be shorter when it was paired with the easy
task. Table 2 shows a small difference in this direction, but it does
not approach significance, t(35) � .57, �p

2 � .007. (Participants’
last visits were excluded from this analysis, as they were timed
out.)

One might argue that this test is low power in that average visit
times were rather variable because of the variation in overall
number of switches. For this reason, we inspected each partici-
pant’s first visit to the medium task when he or she had experi-
enced the competing task (i.e., either the second or third visit
overall). These data showed no effect of competing task—visits to
the medium task were slightly but not reliably longer on average
when the competing task was easy, t(35) � .27, �p

2 � .002.
A very similar test can be made of the influence of the difficulty

of the current task (as opposed to competing task) by inspecting
each participant’s very first visit. At this point, the participant had
absolutely no knowledge about the competing task, yet, in the
medium/hard group, the length of the first visit to the easier task
was shorter than to the harder task, t(18) � 3.04, p � .05, �p

2 �
.34. This difference was not significant in the medium/easy group,
t(18) � .13, �p

2 � .001, but the performance data showed that these
two tasks were not very different in difficulty.

A similar story emerged from the giving-up times. If the main
influence on these times were the attraction of the competing task,
then we would expect giving-up times for the medium task to be
shorter when the alternative is easy rather than hard. There was no
such tendency in the data (see Table 2).

Having found no evidence for the plausible hill-climbing ac-
count of switching and replicated all the main qualitative effects of
Experiment 2, we turned to the question of whether our quantita-
tive model of switching could explain the current data. Having
already shown, in dealing with the results of Experiment 2, that the
model makes seriously constrained predictions, we focused on
whether the model could fit the new data, using the old best fitting
parameter values scaled to the different time dimensions of this
experiment. Total time available to participants increased from 10
to 14 min, so we increased T accordingly from 30 s to 42 s.

Figure 6. Experiment 3: longest between-item times and giving-up times per condition. Error bars reflect
standard errors.
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Because G’s role is to allocate time preferentially to better patches,
it was unclear whether or not it should be scaled, so we explored
two parameter-sets, one in which G was scaled (24 s instead of
18 s), the other in which G remained the same. The value of
p-subgoal was held constant at 0.1 (n.b. The initial word-
generation probabilities for the medium task were chosen to best
fit the overall word-generation data, yielding slightly different
values in the two conditions, .57 when paired with hard and .50
when paired with easy). The model was extended to 140 time
units, each corresponding to 6 s.

As shown in Appendix A, the resulting model produced good
fits of all dependent variables. Predictions for all six variables were
within the 95% confidence intervals of participant means. The
underestimate of longest between-item times was repeated but
ameliorated, and again, all important qualitative effects were re-
produced.

Discussion

All of the most challenging reliable effects from Experiment 2
were replicated. Participants in both conditions spent reliably more
time on their easier task. Giving-up times were regularly preceded
by longer between-item times. Giving-up times were substantially
and reliably higher in the harder of the two tasks.

The findings of Experiment 3 offer clear support for the idea
that duration of visits and giving-up times were influenced by task
difficulty, but no support for the suggestion that people’s decision
to shift would be determined by the performance characteristics of
the competing task. However, we must be cautious in the treatment
of a null result: We are not claiming strong evidence against the
influence of competing tasks.

Again, most participants allocated their time preferentially to the
easier task and presumably improved their overall performance by
so doing. Of course, this means that the total time spent on the
medium task was less when it was paired with an easier task than
when it was paired with a harder task, yet the evidence from the
within-visit timing data suggests that this difference resulted pri-
marily from the different decisions to leave hard versus easy tasks
rather than different decisions in the medium task caused by the
characteristics of its competitor task.

Our two-process quantitative model, adding a subgoal-
completion component to Green’s rule so as to determine switch
decisions according to number of items and time since last item,
offered accurate fits to the participants’ mean data without special
fitting of the three free parameters. Instead, parameter values were
simply scaled from those that offered the best fit in Experiment 2.
These scaled parameter values allowed good quantitative fits for
the dependent variables in two independent groups of participants,
each with different versions of the task. (Additionally, of course,
the model explained all the important, replicated qualitative effects
in the data.)

Although our model successfully explained longer giving-up
times on more difficult tasks, these may be considered counter-
adaptive and may have resulted in too little additional time being
allocated to the easier of the two tasks. However, they were only
counteradaptive to the extent that the tasks were not depleted. If,
for example, there were no more words that could be generated in
the easier task, then it would be rational to spend more time on the
difficult task. None of the participants in these experiments came

close to finding all the words from any of the sets of letters, but this
is a different matter from their belief that they may have done just
this. Perhaps, then, the higher giving-up times on the difficult task
reflected the greater time required on difficult tasks to gain evi-
dence that the patch had been depleted. Intuitively, this is an
appealing explanation of the phenomenon, quite distinct from the
one we have been pursuing.

This explanation could readily be tested by providing partici-
pants with information concerning the extent to which they have
exhausted the task. Experiment 4 did exactly this and at the same
time extended our investigation to a similar but different task in the
name of generalization of the basic phenomena.

Experiment 4

Experiment 4 used a task of searching for words in a grid of
letters, a task that is quite popular in puzzle magazines. As in
earlier experiments, participants were free to switch between two
puzzles and were given the goal of maximizing the total number of
words found. As a further incentive to attend to this overarching
goal, participants were paid 10 pence for each word found.

A feature of the Scrabble task is that it produces responses that
are sometimes clustered, in terms of both orthography and time
(e.g., a burst of words with the same first syllable). We have not
analyzed this clustering and consider it noise in relation to our
hypotheses, which assume an idealized diminishing returns curve.
We do not believe that the clustering could have caused the
patterns in data to which we have attended, but it may have masked
other patterns. The word-search puzzle seemed likely a priori to
exhibit less clustering.

Another way in which the data from a word-search puzzle
would be purer is that they could not contain erroneous responses,
such as misspelled or repeated words, which, for the Scrabble task,
we included in our analysis of giving-up heuristics but not overall
performance.

Finally, an important assumption of our method is that we know
on which task a participant is working when. We believe this
assumption is quite strong in the case of the seven-letter Scrabble
tasks, but it is not inconceivable that participants occasionally
thought of words for the nonactive task. The word-search task is
even more strongly stimulus based.

The design of Experiment 4 was similar to Experiment 3 in that
three tasks were used, with each participant receiving two of the
three. However, the single task that all participants received was
the easiest of the three. This allowed us a very direct test of a
fundamental assumption of our account of Experiments 2 and 3,
namely, that participants were sensitive to the actual difficulty of
each task rather than merely to the direction of relative difficulty
of the pair. This assumption has already gathered support in terms
of the durations of the very first visits, but the new design allowed
a test in terms of overall time allocation. Although we still pre-
dicted that both groups would spend more time in the easier task,
we additionally hypothesized that participants in the easy/hard
condition would spend less time in the alternative task than those
in the easy/medium condition.

The other novelty in Experiment 4 was a counter showing the
number of words remaining in each puzzle. This ensured that
participants had accurate information about the extent to which a
patch (or puzzle) had been depleted.
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Method

Participants. Twenty-four undergraduate students from
Cardiff University participated in the study (5 male, 19 female;
ages 18–22 years). Participants received a base rate of £2 for their
participation. Additional pay was performance dependent (10
pence for every word found) and varied between £1.60 and £3.70
(mean of £2.48).

Design. Each participant received the same easier puzzle (Puz-
zle A: in which the hidden words were all names of fruit and
vegetables) and one of two harder puzzles. The difficulty of the
harder puzzle was either medium (Puzzle B: birds) or high (Puzzle
C: chemical elements). Thus, there was one between-subjects
factor (group or puzzle combination) with two levels and one
within-subjects factor (puzzle difficulty) with two levels. Puzzle
order (or the identity of the initial puzzle) was counterbalanced
within each puzzle combination group.

Materials. Three different word-search puzzles were con-
structed: All puzzles comprised a 20 � 20 grid of letters, in which
words from a particular category were present, some in each of
four orientations by two directions (Vertical, Horizontal, Both
Diagonals � Forward, Backward).

The difficulty of the puzzles was manipulated by varying the
total number of words and the proportions of words in the different
directions. Appendix B shows these puzzles and solutions. Word
frequency of target words was not explicitly controlled but was
likely to be higher in the easy puzzle (fruit and vegetables) than in
the medium puzzle (birds) than in the hard puzzle (chemical
elements).

The software interface to the puzzle was programmed in MS
Visual Basic 6.0. Within a 600 � 600 pixel puzzle grid, partici-
pants were required to click on the first letter of any found word.
If the clicked letter was indeed the first letter of a hidden word, a
feedback sound was played, and a status bar message congratu-
lated them on finding a new item. The initial letter was then
highlighted, and remained highlighted throughout the experiment.
If the clicked letter was not the first letter of a word, an error sound
was played and a warning message appeared.

A timer (counting down the number of seconds remaining in the
experiment) was always visible in the upper left corner of the task
window. Below this clock, a labeled counter showed the number of
words left to be found in the current puzzle in red. Directly below
this, the total number of words found so far was displayed in blue.

In addition, the number of error clicks (false alarms) was dis-
played. Throughout the experiment, participants could switch be-
tween puzzles by clicking on a button in the upper right corner of
the puzzle window (i.e., to the right of the counters). Each puzzle,
as well as the puzzle switch button, was labeled with the semantic
category of words it contained.

Procedure. On entry to the experimental laboratory, partici-
pants were presented with written instructions and with a practice
puzzle. Participants were explicitly instructed not to click on letters
until they had found words and told that more than a few such
errors would lead to them being excluded from the experiment and
their fee being reclaimed. (In practice, false alarms were rare,
accounting for less than 5% of all clicks on the puzzle grid.)

The test phase lasted for 15 min. Upon the participant’s pressing
a start button, either the easy, the medium, or the hard puzzle was
displayed (counterbalanced within groups), and participants were
allowed to swap between puzzles whenever and as often as they
chose (by clicking on the puzzle switch button). Thus, only a
single puzzle was visible and active at any one time, but partici-
pants were free to switch between puzzles.

Results

Table 3 shows the main descriptive statistics of interest. Our
main purpose in Experiment 4 was to replicate the important
significant effects of Experiments 2 and 3, and the inferential tests
are presented with this in mind.

The number of task switches was somewhat lower than in the
Scrabble experiments but did not differ between groups in this
experiment, t(22) � 0.55, p � .59, �p

2 � .01.
For number of words found, a mixed ANOVA (Group � Task

Difficulty) yielded significant main effects of group, F(1, 22) �
7.60, MSE � 14.68, p � .001, �p

2 � .26, and task difficulty, F(1,
22) � 179.30, MSE � 13.20, p � .001, �p

2 � .89, as well as a
significant interaction, F(1, 22) � 7.50, MSE � 13.20, p � .05,
�p

2 � .26. Both groups found about an equal number of words in
the easy puzzle, but, unsurprisingly, the easy/hard group found
fewer words in their alternative puzzle than did the easy/medium
group, t(15.5, corrected due to unequal variances) � 5.49, p �
.001, �p

2 � .58.
Across both groups, 21 out of 24 participants spent longer on

their easier task (binomial test p � .001). To test that time spent on
a task depended on the absolute level of difficulty of that task, we

Table 3
Experiment 4: Summary Data

Dependent measure Task

Easy/medium

Task

Easy/hard

M SD M SD

Number of switches 5.33 2.81 4.75 2.34
Words found Easy 19.50 4.36 Easy 19.33 4.77

Medium 8.33 3.39 Hard 2.42 1.56
Time spent on task (s) Easy 522.17 94.88 Easy 608.72 95.70

Medium 378.42 94.87 Hard 291.87 95.72
Mean duration of visit (s) Easy 236.97 133.33 Easy 284.49 135.06

Medium 161.58 82.02 Hard 104.87 50.74
Mean duration of very first visit (s) Easy 179.64 95.03 Easy 310.76 161.44

Medium 143.66 127.32 Hard 54.25 42.22
Mean duration of first visit to easy task having seen alternative task (s) 231.34 158.72 261.06 156.04
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directly compared time spent on the medium task versus the hard
task between groups. This difference was reliable, t(22) � 2.23,
p � .05, �p

2 � .18.
Each participant’s very first task visit was analyzed to test for an

effect of task difficulty independent of any knowledge of the
competing task. Two t tests were conducted (as each participant
contributed only one value to either the easy or the harder task).
For the easy/medium group, there was no significant difference
between very-first-visit times to easy versus medium tasks, t(10) �
0.55, p � .59, �p

2 � .03. For the easy/hard group, significantly
more time was spent on the first visit when it was to the easy rather
than the hard task, t(10) � 3.77, p � .01, �p

2 � .59. The difference
between conditions could, we suggest, again be understood in
terms of the magnitude of the difficulty difference between puz-
zles.

The role of the competing task was again assessed in a similar
way, by inspecting the mean duration of the first visit to the easy
task having seen the alternative task (each participant’s second or
third visit overall—one participant in the easy/hard group did not
switch back to the easy puzzle so provided no data for this
analysis). The t test revealed no significant effect of competing
task, t(21) � �0.45, p � .66, �p

2 � .01.
Considering giving-up times (see Figure 7), data from four

participants in the easy/hard group were excluded as these partic-
ipants failed to produce any visits where they generated at least
one item and then switched out of the hard task. A 2 � 2 mixed
ANOVA (Group � Task Difficulty) yielded only a significant
main effect of task difficulty, F(1, 18) � 4.51, MSE � 974.29, p �
.05, �p

2 � .20. There was no significant effect of group, F(1, 18) �
0.02, MSE � 951.29, p � .89, �p

2 � .001, nor any interaction
effect, F(1, 18) � 0.28, MSE � 974.29, p � .60, �p

2 � .02. Again,
giving-up times were reliably longer for harder tasks. (Of the four

excluded participants, one only switched once in the experiment,
so did not generate any usable giving-up time data for the hard
task. However, the other three participants were excluded because
they failed to generate items on the hard task. These participants
could be included if the total visit time for no-item visits were
counted as a giving-up time. We made this adjustment for all
participants and reanalyzed the data. Exactly the same pattern of
significant effects emerged.)

Comparing longest between-item times with giving-up times
(see Figure 7), a 2 � (2 � 2) mixed ANOVA—Group � (Time-
type � Task Difficulty)—yielded a significant main effect of
Timetype, F(1, 18) � 6.03, MSE � 1,473.51, p � .024, �p

2 � .25,
and a significant Timetype � Task Difficulty interaction, F(1,
18) � 15.30, MSE � 467.40, p � .001, �p

2 � .46. As in previous
experiments, between-item times were longer than giving-up
times, particularly in the easier task.

The display of number of words remaining to be found sug-
gested one final, novel analysis. Did participants typically switch
into patches they knew to be richer in terms of remaining items? If
people were primarily motivated to switch into richer patches, the
percentage of such switches should outweigh the percentage of
switches into equal or sparser patches. As the instructions did not
include any information about the actual richness of patches (over-
all or for any particular puzzle), participants had to have visited
each puzzle once before making an informed comparison between
their potential yields, so first visits were not considered. Also,
because final visits were terminated by the experimental clock
rather than a decision to switch into an alternative patch, they were
not considered in this analysis. Participants switched 52 times
(53.6%) into a richer patch and 45 times (46.5%) into a poorer
patch. The difference did not approach significance, t(22) � 1.23,
p � .23, �p

2 � .07. Switches into an equal patch did not occur.

Figure 7. Experiment 4: longest between-item times and giving-up times per condition. Error bars reflect
standard errors.
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Thus, it seems unlikely that the primary motivation for task switch-
ing was the prospect of a richer alternative patch.

Although the main purpose of Experiment 4 was to test the
robustness of our experimental effects under different conditions
and for a different task, we explored the success of our quantitative
model at explaining the data. Because so few items were generated
in the hard task (M � 2.42), a high percentage of runs of the model
failed to produce a giving-up time for the hard task. Thus, we do
not report fits for the performance of the group that received the
easy/hard task.

The T value from Experiment 2 was scaled up to 48 s in accord
with the longer task duration. (We modeled finding rates by a
simple exponential, with initial probabilities of word finding as .55
in the easy task and .28 in the medium task, each with a .976
decrement. The model was also extended to 150 time units, each
corresponding to 6 s.) Combining this with the other parameter
values from Experiment 2 produced a reasonable fit to the data
apart from the number of switches between the easy/medium tasks.
However, given the completely different task, we would not nec-
essarily expect parameter values to carry over unchanged. A best
fit to the data was obtained using the values T � 60 s, G � 30 s,
and p � .1. The values of both these fits are shown in Appendix
A. For the best fit, the times on tasks, giving-up times, and number
of switches were all within the 95% confidence intervals of the
participant means. Additionally, all the important qualitative ef-
fects were predicted.

Discussion

The most important findings from Experiment 4 are that the
challenging complex of data relating to switch decisions was
replicated with a different task and despite participants being
provided with veridical information about the extent to which each
task had been depleted. In particular, participants generally chose
to switch tasks rather frequently and reliably devoted more time to
the easier task despite reliably longer giving-up times in the harder
task.

In addition to these replications, Experiment 4 yielded direct
evidence that participants’ time allocation was sensitive to the
actual difficulty of each task, rather than based on a mere quali-
tative comparison. The decision to switch into a different patch
was shown to be relatively unrelated to the remaining richness of
the alternative patch.

General Discussion

We have reported three experiments in a new paradigm in which
participants were free to allocate time preferentially across a pair
of similar tasks so as to try to optimize overall performance. Our
interest has focused not on task performance per se but on how the
monitoring of task performance by participants informed their
decisions to switch back and forth between tasks so as to manage
their time effectively.

The most fundamental observation in this article is that when
participants were free to allocate their time as they wished across
a pair of tasks, most chose to switch between the tasks rather
frequently. This bald observation raises two fundamental ques-
tions: Why did participants switch back and forth between tasks,
and how did they decide when to switch?

Experiment 2 suggested that participants switched partly so as to
allocate time preferentially between tasks, according to monitored
performance on the tasks. In all our experiments, the two available
tasks had different gain functions, and these were not known in
advance. In such situations, adaptive allocation must be done by
switching, as it cannot be planned a priori. When the gain func-
tions are dynamic, so that the most rewarding task at any moment
may change, then relatively frequent switching is essential. These
properties make the allocation problems we have studied distinct
from typical choice situations, in which one task is always more
rewarding than the others or in which participants are required to
select, rather than to allocate a continuous resource such as time.
In these situations, one might expect to observe task switching in
order to sample (see Krebs, Kacelnik, & Taylor, 1978). Future
research will need to confirm the scope of our findings across
diverse tasks that differ in ways including the characteristic func-
tion relating performance gains to time on task.

A further aspect of our experimental tasks may have encouraged
frequent switching. Because the time remaining to perform a task
is likely to be inherently uncertain, even with a clock (which
presumably cannot be monitored continuously), it is rational to
attempt to maximize total gain incrementally, in real time, rather
than merely in total.

Despite the above discussion, it is interesting to note that par-
ticipants who had a fixed separate budget of time for each task
(Experiment 2) nevertheless chose to switch frequently, although
less frequently than participants who were free to allocate their
time preferentially. This suggests a general tendency to switch
independent of the attempt to allocate time adaptively according to
monitored performance.

Following the optimal foraging literature, we moved beyond
statistics of overall time allocation to consider exactly when par-
ticipants chose to move from one task to another to attempt some
insight into how such switching decisions are made. Stephens and
Krebs (1986) described several rules of thumb that have been
suggested to underlie foragers’ patch-leaving decisions. The data
from our experiments did not support any of these heuristics as
stand-alone explanations for participants’ switch decisions in the
tasks that we studied. Problem solvers evidently did not simply
perform each task for a certain period of time or until they had
discovered a certain number of words, nor did they simply switch
at random intervals, independent of their performance. If they had
acted according to any of these heuristics, they would have failed
to allocate more time to more rewarding tasks.

Participants were sensitive to the rates of reward within each
task, but they did not use a simple giving-up-time threshold. If they
had used such a threshold, there would not exist between-item lags
within a visit to a task that were longer than the giving-up time for
that visit. Yet we have reported that on average, longest between-
item times were reliably longer than giving-up times (even if this
effect did interact with task difficulty—it makes little sense to
pursue a switching heuristic that could apply only in some tasks).

Finally, participants did not base their decisions entirely on the
rate of return in the competing task so as to switch to the currently
more rewarding task (Experiment 3). Participants’ switch deci-
sions were sensitive to the current reward rate and, to some extent,
independent of the competing task (e.g., when the competing task
had not yet been experienced, as indexed by reliable effects of task
difficulty on durations of very first visits).
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We have argued that the stochastic model that we call Green’s
rule (following Stephens & Krebs, 1986) offers a good explanation
of the qualitative effects in our data. This rule supposes that
participants (foragers) set a time for which they are willing to
remain in a task and increase this by a fixed amount with each
success. This simple model applies readily to the ongoing inter-
leaving of activity between a fixed number of tasks even though it
was invented to account for foraging behavior in which patches
were encountered at random. The heuristic successfully allocates
more time to the easier of two tasks despite producing longer
giving-up times in the harder task. In many ways, it offers a simple
and effective explanation of our data. However, it cannot fit the
size of these effects—in particular, the predicted difference be-
tween giving-up times in the two tasks cannot approach the ob-
served levels without failing to allocate sufficient time to the easier
task.

Thus, we have extended Green’s rule with an additional prob-
abilistic driver of leave decisions. We have noted that naturalistic
studies of self-interruption reported task switches immediately on
subgoal completion (González & Mark, 2005)—and we would
argue that such a strategy is intuitively plausible. Furthermore and
in keeping with this observation, the raw data of giving-up times
in our experiments revealed a substantial minority of short
giving-up times that Green’s rule cannot produce. Thus, we have
added a single free parameter—a probability of making a task
switch on completion of a subgoal (i.e., after generating a word).

The resulting three-parameter model, with two independent
bases for switch decisions, is able to fit the size of the observed
effects as well as their direction. Furthermore, it actually predicts
the effects, that is, the model’s behavior over the plausible range of
its parameters is limited, and the participant data are within its
scope, for a large number of dependent variables treated simulta-
neously. This success held true in three experiments using two
completely different tasks, and the best fitting parameter values
were consistent across the two experiments that used variants of
the same task (Experiments 2 and 3). Thus, we have not only
presented reliable evidence for a challenging pattern of effects but
also reported support for our model that goes beyond most model-
fitting enterprises in experimental psychology (see Roberts &
Pashler, 2000).

As far as we are aware, the studies in this article break new
ground and present some surprising findings concerning a rather
universal behavioral tendency, that is, discretionary interleaving of
independent tasks. We hope that these studies have opened inter-
esting new avenues of research, developing recent attempts to
extend foraging theory to human information-processing tasks
(e.g., Pirolli & Card, 1999). Discretionary time allocation among
tasks is a topic of much interest in both theoretical and applied
psychological communities, and this article suggests several pos-
sible routes of empirical and theoretical development.
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(Appendixes continue)

Appendix A

Best Fit Model/Participant Values for Experiments 2, 3, and 4

Dependent measure

Experiment 2

Experiment 3
Experiment 4:
Easy/medium

Data
Best
fit

Easy/medium Medium/hard

Data
Scaled

T
Best
fitData

Scaled
T

Scaled
T & G Data

Scaled
T

Scaled
T & G

Time on easier task (%) 59.39 58.53 54.32 52.68 51.51 53.31 55.67 55.72 58.02 54.47 56.91
Number of switches 7.00 6.79 7.00 7.35 6.57 9.01 9.07 7.58 5.33 10.32 6.13
Giving-up time on easier task 14.94 12.28 17.08 17.51 13.34 19.31 19.15 17.07 32.12 26.31 32.71
Giving-up time on harder task 24.01 21.63 20.82 21.79 22.07 36.34 23.64 28.02 58.88 31.02 45.29
Longest between-item time on

easier task 27.12 20.39 33.33 24.77 24.92 29.97 26.05 33.31 79.70 24.19 41.70
Longest between-item time on

harder task 27.17 20.36 27.22 23.88 28.48 39.66 24.49 27.75 57.79 24.23 39.59

Note. Times are in seconds unless otherwise indicated.
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Figure B1. The word-noise-ratio is 70.5%, 50.0% and 30.0% for Puzzles A, B, and C, respectively.

Appendix B

Experiment 4: Word-Search Puzzles and Solutions
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