Posts in Category: cognitive science

Paper: Competitive mate choice

Hansjörg Neth, Simeon Schächtele, Sulav Duwal, Peter M. Todd

Competitive mate choice: How need for speed beats quests for quality and harmony

Abstract:  The choice of a mate is made complicated by the need to search for partners at the same time others are searching. What decision strategies will outcompete others in a population of searchers? We extend previous approaches using computer simulations to study mate search strategies by allowing direct competition between multiple strategies, evaluating success on multiple criteria. In a mixed social environment of searchers of different types, simple strategies can exploit more demanding strategies in unexpected ways. We find that simple strategies that only aim for speed can beat more selective strategies that aim to maximize the quality or harmony of mated pairs.

Chapter: The cognitive basis of arithmetic

The truths about numbers are in us; but still we learn them.
G.W. Leibniz (1765), Nouveaux essais sur l’entendement humain, p. 85

[Copyright neth.de, 2010]:

Helen De Cruz, Hans Neth, Dirk Schlimm (2010). The cognitive basis of arithmetic.

Helen De Cruz, Hansjörg Neth, Dirk Schlimm

The cognitive basis of arithmetic

Overview:  Arithmetic is the theory of the natural numbers and one of the oldest areas of mathematics.  Since almost all other mathematical theories make use of numbers in some way or other, arithmetic is also one of the most fundamental theories of mathematics.  But numbers are not just abstract entities that are subject to mathematical ruminations — they are represented, used, embodied, and manipulated in order to achieve many different goals, e.g., to count or denote the size of a collection of objects, to trade goods, to balance bank accounts, or to play the lottery. Consequently, numbers are both abstract and intimately connected to language and to our interactions with the world.  In the present paper we provide an overview of research that has addressed the question of how animals and humans learn, represent, and process numbers.

Paper: Feedback design for controlling a dynamic multitasking system


If an organism is confronted with the problem of behaving approximately rationally,
or adaptively, in a particular environment, the kinds of simplifications that are suitable
may depend not only on the characteristics—sensory, neural, and other—of the organism,
but equally on the nature of the environment.
H.A. Simon (1956), Rational choice and the structure of the environment, p. 130

[Copyright neth.de, 2008]:

Hans Neth, Sunny Khemlani, Wayne Gray (2008)

Feedback design for the control of a dynamic multitasking system: Dissociating outcome feedback from control feedback. Human Factors Journal, 2008.

Hansjörg Neth, Sangeet S. Khemlani, Wayne D. Gray

Feedback design for the control of a dynamic multitasking system: Dissociating outcome feedback from control feedback

Objective: We distinguish outcome feedback from control feedback to show that suboptimal performance in a dynamic multitasking system may be caused by limits inherent to the information provided rather than human resource limits.

Paper: A taxonomy of (practical vs. theoretical) actions

The solution to a problem changes the problem.
Peer’s Law

[Copyright neth.de, 2008]:

Hans Neth and Thomas Mueller (2008). Thinking by doing and doing by thinking: A taxonomy of actions. Paper presented at CogSci 2008.


Hansjörg Neth, Thomas Müller

Thinking by doing and doing by thinking: A taxonomy of actions

Abstract:  Taking a lead from existing typologies of actions in the philosophical and cognitive science literatures, we present a novel taxonomy of actions.